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Abstract— An active-period-aware supervised nonnegative ma-
trix factorization (NMF) approach for music transcription is
proposed. Supervised NMF relies on a set of known spectrograms
associated with all musical instruments that may possibly be in-
volved with given music data; this is supported by the availability
of large database of a variety of musical instruments. It is free
from the source-number determination problem and this is a
significant advantage over the unsupervised NMF approaches.
The proposed approach is composed of three steps. Step 1:
Apply the existing supervised NMF algorithm. Step 2: Estimate
the ‘active’ periods (during which musical sounds are present)
based on the outcomes of Step 1. Step 3: Optimize a refined cost
function reflecting the estimate of active periods. The awareness
of active periods leads to avoidance of the so-called octave-errors
which is a central issue of the existing supervised NMF method.
Simulation results show the efficacy of the proposed approach.’

I. INTRODUCTION

We address the supervised nonnegative matrix factorization
(NMF) problem for music transcription in which a given non-
negative matrix Y wants to be factorized into two nonnegative
matrices W H with W known a priori. Here, W a basis
matrix (a set of basis vectors) and H is an activation matrix
(a set of activation vectors). The supervised NMF method
proposed in [1] has no need to determine the source number;
this is a significant advantage over the unsupervised NMF
approaches [2-7]. The method in [1] is based on convex
optimization and it involves two regularizers: (i) the sum of
the ¢ norms of the row vectors of H (which promotes ‘row
sparsity’ of H and which is referred to as a group ¢; norm) and
(ii) the ¢; norm of vec(H') (which promotes sparsity of H).
The former regularizer aims to pick up only those notes which
are present in the music, while the latter one is based on the
fact that each note is present only in a part of the time frame
(for which NMF is performed). Typically, the spectrograms for
two pitches (of the same musical instrument) that differ by an
octave, e.g., piano-C3 and piano-C4, are fairly close to each
other. Hence, when such octave-different notes are present in
the time frame, the spectrogram of one of such two notes
tends to be confused with the other one (see Section II-B for
an illustration of such a phenomenon). This is due to the use of
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the group ¢; norm where the group is given by the set of row
vectors of H . The phenomenon, referred to as the octave-error
issue, causes significant performance degradation, and hence
it has been a central issue to be addressed.

In this paper, we propose an efficient supervised NMF
scheme that involves a certain structured ¢;-norm regularizer
to pick up the notes correctly. The proposed scheme first
performs the existing supervised NMF method [1]. Based on
its outcome, it then estimates active periods which are defined
for each note as time frames during which the note is present.
The structured ¢; norm is then defined as the sum of ¢5 norms
of the subvectors (not the whole row vectors) corresponding to
the active periods. (The structured /; norm has been studied in
detail in [8]; it is similar to group ¢; norms, but the groups may
overlap although their union should cover all the elements.)
The proposed scheme finally optimizes a refined cost function
including the structured ¢; norm regularizer. By doing so, the
activeness of a part of some row does not affect the other parts
of the row, which leads to avoidance of the octave errors. The
simulation results show that the proposed scheme outperforms
the existing supervised NMF methods.

II. BACKGROUND AND MOTIVATION
A. Background of supervised NMF

We briefly describe the supervised NMF approach proposed
in [1], which has no need to determine the source number prior
to decomposition. We assume that the basis matrix W is given;
the given basis matrix may contain such basis vectors that are
‘irrelevant’ to Y as well as ‘relevant’ ones. To select ‘relevant’
basis vectors, the supervised NMF has been formulated as the
following sparse optimization problem:

L
(P1) min Jy(H)=[|Y — WH|Z+ic(H)+M\ > _ [l
=1

HcH ——"
(b)
L N-1 L N
FA D D (s = hin)® + A3 YD hunl,
=1 n=1 =1 n=1
©
where Y € RIZVIOXN , which denotes the set of all nonnegative

valued matrices of size M x N, W € R%XL , H =
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g. 1. Single sounds of piano (pitches E4 and ES5).

-
[ﬂl hy --- fALL} € H = REXN_ hy,, denotes the (I,n)-
entry of H, C := RLXY C M, ||-||, denotes the £, norm, and
||| the Frobenius norm. Here, (-)7 stands for transpose, H is
the Hilbert space of the activation matrix H to be optimized,
and ﬁls are referred to as activation vectors. The indicator
funciton ic(H) := 0 if H € C, ic(H) := oo otherwise,
enforces the solution of (P;) to be nonnegative. The other
penalty terms in (P;) are used for (b) basis-vector selection
and (c) correct activation-vector estimation, respectively. (The
first term of (c) enhances temporal continuity.) Typically,
M > L and hence (P;) has a unique solution because of
the strict convexity of |Y — WH ||§

B. Motivation for this study

Our preliminary experiments revealed that the method in [1]
tends to fail when Y contains multiple notes whose frequency
spectra are close to each other. Let us show a simple example.
Fig. 1(a) describes the case that the matrix Y has two notes,
P-E4 (Piano-E4) and P-E5, whose pitches differ by an octave.
The result is depicted in Fig. 1(b). The following observations
indicate the reasons for the mistakes illustrated in the figure.

1) Those frequency spectra whose pitches differ by an
octave tend to be close to each other. Such frequency
spectra are intrinsically difficult to distinguish.

2) The formulation in (P;) uses a group ¢; norm associated
with the row-vector groups as shown in Fig. 2, seeking
for row-sparse solutions. This means that those basis
vectors which are regarded ‘relevant’ tend to be regarded
active by mistake even in inactive periods.

3) There is a model mismatch in general; i.e., there is a
gap between the frequency spectra of the model (W)
and the true audio signals.

From the above observations, one can see that the frequency
spectra of the true audio signals can be expressed — at the
smallest cost, i.e., with the minimal J;(H), — as a linear
combination of P-E4 and P-E5 (rather than solely by one of
them).
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Single group

Fig. 2. The group for the structured ¢1 norm.
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Fig. 3. The groups for the structured #; norm constructed by using the
solution of (P1). Each group is the set of row vectors of each submatrix of
H corresponding to each active period.

III. PROPOSED APPROACH WITH A STRUCTURED ¢; NORM

In Fig. 1 (b), a resulting H for the problem (P;) would have
zero row vectors (corresponding to the ‘irrelevant’ basis vec-
tors) and nonzero row vectors (corresponding to the ‘relevant’
basis vectors). It should be emphasized that the selected basis
vectors are maybe incorrect in situations that the input matrix
Y has two notes whose pitches differ by an octave. However,
each estimated active period (duration time) is correct to some
extent. Active period is formally defined as follows.

Definition 1 (Active period): For the solution H of (Py),
we define the set of active periods as follows:

A={[n1,n2] :={n1,n1+1,n1 +2,-- ,na} |
ny,ng € [1,N], 3l € [1,L] s.t. (C1) and (C2) hold}.
ey
Cl. hipy #0,himy41 #0,-+ Ry, #0.
C2. himy—1 = hiny+1 =01if ny > 2 and/or np < N — 1.
We construct the groups for the structured ¢; norm based on
the following rules.

o The overlapping periods are counted individually. In the
case of Fig. 3, for instance, the number of active periods
is four.

o The group construction does not take into account what
pitch is active.

A. Problem Formulation
Define

S:=A{@j) [ie[L,L],j€[1,N]}, 2

and denote by 2° its power set (the collection of all the subset
of §). Let G C 2° satisfy UGegG = S; ie., the sets in
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TABLE I
SUMMARY OF THE PROPOSED SCHEME.

Step 1. Solve (P1) by the method in [1].

Step 2. Detect the active periods based on the result of Step 1 and
construct the groups based on the active periods (See (1)).

Step 3. Solve (P2) based on (10a) and (10b).

G may overlap but their union covers all the elements in S

(cf. [8]). We formulate the supervised NMF problem using

the overlapping groups as the following sparse optimization

problem:

(P2) mln Jo(H
HeH

= |Y ~ WHI2 +ic(H) + Q(H),

where

Sy |wenl, @
Geg

Here, R is an L x N matrix such that its (s, t)-entry r$, >
0 if (s,t) € G and 7%, = 0 otherwise, and o denotes the
Hadamard product. A désign example of G is presented below.

Example 1 (Group design with active-period estimate):
Assume that an estimate of active periods of the activation
matrix H is available by solving the problem (P;) [1]. We
consider (P2) with

ZA Znhqlnﬁxzzm )
q=1 =1

I=1n=1

where ﬁqyl denotes the [-th row vector of the submatrix
H, c REX(na2=ma1+1) corresponding to the g-th active
perlod [[nq71,nq72]] and @ is the cardinality of the active set
A. Each Zl L lRgl2 is the structured ¢, norm penalty of
the submatrix of H for selecting the basis vectors ‘relevant’
to Y for the period.

B. Proposed Scheme

The proposed approach has three steps as summarized in
Table 1. First, the solution of (P;) is computed to estimate
the set A of active periods (Step 1). Then, the groups for the
structured ¢; norm are constructed by using the estimated .4
(Step 2). Finally, the solution of (Py) is computed (Step 3) as
described below.

The cost function in (P2) with the penalty Q(H
Example 1 can be written in the following form:

) given in

Q+2
pUH) + > v (H (5)

smooth ;,_/
nonsmooth

Js(H) =
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where
¢(H):=|Y-WH]|[;, (6)
V1(H) = z'c(H) )
i1 (H) = ), ZIIthH i=1,2,-,Q, (8
N L N
Yor2(H) =YY bl ©)
I=1n=1

Here, ¢ is a differentiable convex function with the Lipschitz-
continuous gradient (i.e., ¢ is smooth) while v;, j =
1,2,---,Q + 2 are nonsmooth but proximable convex func-
tions. (See [9, 10] for details about convex analysis in Hilbert
spaces.)

The problem (P3) with the penalty Q(H) given in Example
1 can iteratively be solved by generating the sequence of the
auxiliary variables (Z§k))k€N CH,j=12,-,Q + 2,
and (H(k))kEN C ‘H, with initial estimates Z(O), j =

1,2, ,Q+2, and H := Y2720, 219 as follows [11]:
(k) _ (k1) (k=1) _ (k=1)
2= 2{ t o (proxz, (HE - Z]
—Vp(H D) - B,
j:172a"'7Q+27 (loa)
Q+2
H® =3 w;z, (10b)
j=1
where w; € (0,1) s.t. ZQlw]_l j=12 -,Q+2

a € (O,mm{5 "VH}), v E (O, n) n= 20,mx(W W)

27 2ny

W =diagW W .- W) € RVMXNL ‘and gax w' W)
is the maximum modulus of the eigenvalues of W W, The
gradient Vi and the proximity operators prox oy

1,2,---,@Q + 2, can be computed as follows:

Vo(H)=2W ' WH - 2W'Y (11)
prox%lbl(H) = Pc(H)
maX{hm, 0} . -max{th, 0}
max{hr1,0} - -max{hrn,0}
(12)
PO () =
Ay S N
Zel [ j,,Ly {1+70}hj,1ahj,l,R]
wjllhgall2
j:1725"'7Q7 (13)
prowa”wQﬂ(H) =
L,N 5\7
Z Sgn(hl,n)max |hl,n|_—70 El,'m (14)
lin=1 wYQ+2
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N - L pr
where {e;};%; denotes the standard basis for R™, h;,; €

R>(1=1) and fALLVR € R (N=15.2) are the Ith rows of the
submatrices H,;, € REX(Mii—1) and H;g € REX(NV=n52)
of H =:[H,1, H; H;Rg]|,respectively,and E ,, is the Lx N
matrix having one at the (I, n)-entry and zeros elsewhere. The
definitions of the proximity operator and the projection are
given in the appendix.

IV. SIMULATION RESULTS

We show the efficacy of the proposed scheme for music
transcription. As the input audio signal, we use simple single
sounds of piano. The basis matrix W is composed of am-
plitude spectra which are respectively obtained by the short-
time Fourier transform (STFT) of piano sounds of 88 pitches,
which have different timbre from those of the input signal,
violin sounds of 46 pitches, and flute sounds of 37 pitches
[12].

We compare the performance of the proposed scheme with
the method proposed in [1], the Beta Nonnegative Decompo-
sition (BND) method [13], and the unsupervised Euclidean-
NMF (EUNMF) method [4]. All the audio signals for both
the input audio signal and the audio signals to learn W are
sampled at 16 kHz. STFT is computed using a Hamming
window that is 64 ms long with a 32 ms overlap. The param-
eter of unsupervised EUNMF (source number) is set to the
number L = 3 of actual sources that are present in the music
under consideration. The initial estimates for unsupervised
EUNMF are selected randomly, and the algorithm is run for
300 iterations. The parameter of BND is set manually to
£ = 0.95 to attain reasonable performance. The initial estimate
for BND is set to a matrix with all entries equal to one,
and the algorithm is run for 300 iterations at each period.
The parameters of (Py) are set manually to A; = 900, A2 =
0, A3 = b, respectively, to attain reasonable performance. The
initial estimates Z§O), j =1,2.3, are set to random matrices,
and the algorithm is run for 300 iterations. The parameters of
(P2) are set manually to A; = 100, A2 = 500, A3 = 600, \y =
100, A5 = 500, ¢ = 500, 7 = 400, g = 400, A = 5,
respectively, to attain reasonable performance. (Note that the
resulting H for (P;) indicates () = 8 as seen in Fig. 4(d).)
The initial estimates Z§-0),j =1,2,---,10, are set to random
matrices, and the algorithm is run for 300 iterations. As post-
processing, for all algorithms, each entry of H is divided by
the maximum value of H. We consider each entry of H to
be active (or inactive) if it is greater (or smaller) than the
threshold 0.05.

Fig. 4(a) illustrates the ground-truth reference which con-
sists of piano sounds E4, ES5, and G5 over 5 seconds, and
Figs. 4(b), 4(c), 4(d) and 4(e) depict the post-processed acti-
vation matrix H obtained by the unsupervised EUNMF, BND,
the method in [1], and the proposed method, respectively.
Table II summarizes the results in the standard evaluation
metrics from the MIREX [14]. Note that the groud-truth
reference for the unsupervised EUNMF is not the matrix
illustrated in Fig. 4(a) itself, but its submatrix. It is seen that
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TABLE II
TRANSCRIPTION EVALUATION FROM THE MIREX [14]. THE METRICS F
AND Etot, STAND FOR F-MEASURE AND TOTAL ERROR, RESPECTIVELY.

Algorithm F Erot
unsupervised EUNMF [4] 833 34.3
BND [13] 77.8 45.1
supervised NMF [1] 69.2 58.8
Proposed 89.6 17.7

the proposed scheme attains higher score in F-measure F and
lower score in total error & (measuring different types of
errors), meaning that it outperforms the unsupervised EUNMF
[4], BND [13], and the method in [1] in both metrics. This is
due to the use of the structured ¢; norm reflecting the active
periods (which is unexploited in [13] and [1]).

V. CONCLUSION

This paper presented a systematic approach to supervised
NMF for music transcriptions. The supervised NMF problem
was formulated as a sparse optimization problem under a
structured ¢;-norm regularization reflecting the active periods.
The simulation results showed that the proposed approach
effectively prevents the octave errors and attains excellent
performance.

APPENDIX

Definition 2 ([9,10]): Let (H,||lz) be a real Hilbert
space.

(a) Given any proper lower-semicontinuous convex func-
tion? ¢ : H — R, the proximity operator of 1 of index
v > 0 for any X € H is defined as

prox.,,(X):= argmin
Y Yer

(v + - 1x-712).

Here, the minimizer of the function f1(Y") := ¢(Y') +
% X 7Y||§ uniquely exists because of its coercivity
and strict convexity.

Given any nonempty closed convex set K C H, the
metric projection of any X € H onto the set K is
defined as

(b)

Pg (X)) := argmin | X — Y ||5.
YeK

Here, by the convex projection theorem, the minimizer
of the function f>(Y) := || X — Y| over K uniquely
exists due to the closedness and convexity of K # ().
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