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Abstract—It is widely recognized that the kernel-based learning
scheme is one of powerful tools in the field of machine learning.
Recently, learning with multiple kernels, instead of a single ker-
nel, attracts much attention in this field. Although their efficacy
was investigated in terms of practical sense, their theoretical
grounds were not sufficiently discussed in the past studies. In our
previous work, we theoretically analyzed the standard 2-norm-
based multiple-kernel regressor, and proved that the solution of
the multiple kernel regressor obtained by 2-norm-based criterion
reduces to the solution of the single kernel regressor with the
sum of the kernels. However, the proof was hard to understand
intuitively. In this work, we give a simple proof for the theorem
in which the roles of the 2-norm-based criteria are intuitively
convincing.

I. INTRODUCTION

Kernel-based learning machines [1], represented by the
support vector machines [2], [3] and kernel ridge regressors
[4], are widely recognized as ones of powerful tools in the
field of information science such as pattern recognition, re-
gression estimation and density estimation. Recently, learning
with multiple kernels [5], instead of a single kernel, attracts
much attention in this field. Although their performance was
investigated by experimental results in many works, their
theoretical grounds were not sufficiently discussed. In our
previous work [6], we theoretically analyzed the standard
2-norm-based multiple-kernel regressor, which is defined as
the minimizer of the squared norm of an estimated function
with the 2-norm-based empirical error minimization constraint,
and proved that the solution of the multiple kernel regressor
obtained by the 2-norm-based criteria reduces to the solution
of the single kernel regressor with the sum of all the kernels
used in the multiple kernel regressor, which gave a negative
conclusion for the advantage of the multiple kernel regressors.
In [6], we directly compared the solutions of the multiple and
the single kernel regressors to obtain the above mentioned
theorem. Therefore, it did not lead the intuitive interpretation
of the theorem since mathematical structures specified by the
corresponding criteria were vanished in the solutions. In this
work, we focus on the optimization criterion of the multiple
kernel regressor, and analyze the role of the empirical error
minimization scheme and minimization of the squared norm
of the estimated function in order to reveal the reason why the
multiple kernel regressor reduces to the single kernel regressor

with the sum of the kernels.
The rest of this paper is organized as follows. In Section II,

we review the theory of reproducing kernel Hilbert spaces and
give a summary for regression problems with a single kernel.
In Section III, we show an overview of the result obtained
in our previous work [6], concerned with the multiple kernel
regressors. In Section IV, we analyze the optimization criterion
of the multiple kernel regressor and give a simple proof for
the equivalency of the multiple kernel regressor and the single
kernel regressor with the sum of the kernels. Finally, we give
concluding remarks in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Theory of Reproducing Kernel Hilbert spaces
In this part, we prepare some mathematical tools concerned

with the theory of reproducing kernel Hilbert spaces [7], [8],
[9].

Definition 1: [7] Let Rd be a d-dimensional real vector
space and let H be a class of functions defined on a domain
D ⊂ Rd, forming a Hilbert space of real-valued functions.
The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing
kernel of H, if the following two conditions hold.

1) For every fixed x̃ ∈ D,

Kx̃(·) = K(·, x̃) ∈ H. (1)

2) For every x̃ ∈ D and every f(·) ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (2)

where 〈·, ·〉H denotes the inner product of the Hilbert
space H.

A Hilbert space that has a reproducing kernel K is called
a reproducing kernel Hilbert space (RKHS), and is denoted
by HK . The reproducing property Eq.(2) enables us to treat a
value of a function at a point in D, while we can not deal with
a value of a function in a general Hilbert space such as L2(D)
(the Hilbert space of all square-integrable functions defined on
D). Note that reproducing kernels are positive definite:

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (3)
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for any positive integer N ∈ N, c1, . . . , cN ∈ R, and
x1, . . . ,xN ∈ D [7], where N stands for the set of natural
numbers. In addition, K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D
is followed [7]. If a reproducing kernel K(x, x̃) exists, it
is unique [7]. Conversely, every positive definite function
K(x, x̃) has the unique corresponding RKHS [7]. In this
paper, we assume that all RKHS’s are separable [10] since
many popular RKHS’s are separable.

The following theorem, concerned with the sum of repro-
ducing kernels, plays an important role in the analyses of the
multiple kernel regressors.

Theorem 1: [7] If Ki, (i ∈ {1, 2}) is the reproducing
kernel of the class Fi with the norm || · ||i, then K = K1 +K2

is the reproducing kernel of the class F of all functions
f(·) = f1(·)+f2(·) with fi(·) ∈ Fi, and with the norm defined
by

||f(·)||2 = min
[
||f1(·)||21 + ||f2(·)||22

]
, (4)

the minimum taken for all the decompositions f(·) = f1(·) +
f2(·) with fi(·) ∈ Fi.

Note that this theorem can be easily extended to more than
two reproducing kernels. In the following contents, we use the
notation ‘kernel’ instead of ‘reproducing kernel’ for simplicity.

B. Overview of Kernel-based Regression Problems
Let {(yi,xi) | i ∈ {1, . . . , `}} be a given training data set

with ` samples, where yi ∈ R denotes an output value and
xi ∈ Rn denotes the corresponding input vector, generated
by the model:

yi = f(xi) + ni, (5)

where f(·) denotes an unknown true function and ni denotes
an additive noise. The aim of regression problem is to estimate
the unknown true function f(·) by using the given training data
set and statistical properties of the noise (if available).

We assume that the unknown true function f(·) belongs to
a certain RKHS HK ; and adopt the estimation model written
as

f̂(·) =
∑̀
i=1

ciK(·, xi), (6)

which implies that the estimated function belongs to the linear
subspace

LS = span{K(·, xi) | i ∈ {1, . . . , `}}. (7)

In general, the coefficient ci that minimizes the so-called gen-
eralization error is adopted in the kernel regressors. Roughly
speaking, the generalization error is the difference between the
unknown true function and an estimated one at any point x
in D, which may not be in the set of training input vectors
X = {x1, . . . ,x`}. Since we have

|f(x) − f̂(x)|
= |〈f(·) − f̂(·),K(·, x)〉HK

|
≤ ||f(·) − f̂(·)||HK ||K(·, x)||HK

= ||f(·) − f̂(·)||HK
K(x,x)1/2

for any x ∈ D, which is a trivial consequence of the
reproducing property Eq.(2) of a kernel and the Schwarz
inequality, it is natural to adopt

ES(f(·), f̂(·); K) = ||f(·) − f̂(·)||2HK
(8)

as the generalization error [11], [12], [13]. Therefore, the
kernel regressor is formalized as the problem to find the
coefficient ci that makes ES(f(·), f̂(·);K) as small as possible
only from the training data set. From the reproducing property
Eq.(2), we have

ES(f(·), f̂(·);K)

=
∥∥∥f(·) −

∑̀
i=1

ciK(·, xi)
∥∥∥2

HK

= ||f(·)||2HK
+ c′GXX

K c − 2c′f , (9)

where GXX
K = (K(xi, xj)) denotes the Gram matrix of

the kernel K with the set of training input vectors X ,
the superscript ′ stands for the transposition operator, f =
[f(x1), . . . , f(x`)]′, and c = [c1, . . . , c`]′. Thus, the mini-
mizer of ES(f(·), f̂(·);K) is obtained by the linear equation

∂ES(f(·), f̂(·);K)
∂c

= 2(GXX
K c − f) = 0, (10)

and its solution is reduced to

ĉTL
S = (GXX

K )−1f , (11)

which gives the theoretical limit of the model space LS
∗.

On the other hand, the kernel regressor based on the training
data set is formalized as follows.

Problem 1: Find the coefficient vector c of the model
Eq.(6) that minimizes

JS(c) = ||f̂(·)||2HK
(12)

subject to
yi = f̂(xi), i ∈ {1, . . . , `}. (13)

The constraint Eq.(13) can be represented by

y = GXX
K c (14)

with y = [y1, . . . , y`]′ and the criterion Eq.(12) is reduced to

JS(c) = c′GXX
K c. (15)

It is well known [14] that the solution of Problem 1 is given
by

ĉ1 = (GXX
K )−1y, (16)

which agrees with the theoretical limit Eq.(11) in noise-free
case. Thus, it is concluded that Problem 1 surely achieves the
theoretical limit in the kernel regressor with a single kernel.

∗In this paper, we assume that the Gram matrix is non-singular.
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III. KNOWN RESULTS FOR THE MULTIPLE KERNEL
REGRESSORS

In this section, we introduce the important results for
the multiple kernel regressors, which were obtained in our
previous work [6].

We consider the class of kernels K = {K1, . . . , Kn} and
discuss the regression problem by the multiple kernel regressor
using all kernels in K. The estimation model of the multiple
kernel regressor, considered in this paper, is given as

f̂(·) =
n∑

p=1

∑̀
i=1

c
(p)
i Kp(·,xi), (17)

which implies that the estimated function belongs to the linear
subspace

LM = span{Kp(·, xi) | p ∈ {1, . . . , n}, i ∈ {1, . . . , `}}.
(18)

We assume that the unknown true function f(·) belongs to the
RKHS corresponding to

Ku =
n∑

p=1

Kp (19)

since f̂(·) in Eq.(17) is guaranteed to be in HKu from Theorem
1. Thus, we evaluate the generalization error by the norm of
HKu . Firstly, we identify the theoretical limit of the model
space LM . Since we assume that an RKHS is separable, there
exists a countable set {zk | k ∈ N, zk ∈ D} such that the set
{Ku(·,zk) | k ∈ N} is dense in HKu . Thus, there also exists
the coefficients αk, (k ∈ N) satisfying

f(·) =
∑
k∈N

αkKu(·, zk). (20)

The generalization error of f̂(·) evaluated in HKu is reduced
to

EM (f(·), f̂(·); Ku) = ||f(·) − f̂(·)||2HKu

=
∥∥∥ ∑

k∈N

αkKu(·, zk) −
n∑

p=1

∑̀
i=1

c
(p)
i Kp(·, xi)

∥∥∥2

HKu

= α′GZZ
Ku

α − 2
n∑

p=1

α′GZX
Kp

c(p)

+
n∑

p=1

n∑
q=1

(c(p))′HXX
Kp,Kq

c(q), (21)

where c(p) = [c(p)
1 , . . . , c

(p)
` ]′, α = [α1, α2, . . .]′ and

GZZ
Ku

= (〈Ku(·, zi),Ku(·, zj)〉HKu
) = Ku(zi, zj),

GZX
Kp

= (〈Ku(·, zi),Kp(·,xj)〉HKu
) = Kp(zi, xj),

HXX
Kp,Kq

= (〈Kp(·, xi),Kq(·, xj)〉HKu
),

which are well-defined since Kp(·, xi) ∈ HKu . Let

HXX =

 HXX
K1,K1

· · · HXX
K1,Kn

...
. . .

...
HXX

Kn,K1
· · · HXX

Kn,Kn

 ,

c =

 c(1)

...
c(n)

 , GXZ =

 GXZ
K1
...

GXZ
Kn

 ,

then Eq.(21) is rewritten as

EM (f(·), f̂(·);Ku)
= α′GZZ

Ku
α − 2α′(GXZ)′c + c′HXXc. (22)

Therefore, the minimizer of EM (f(·), f̂(·); Ku) is obtained
by

∂EM (f(·), f̂(·);HKu)
∂c

= 2HXXc − 2GXZα = 0, (23)

which is reduced to the linear equation

HXXc = GXZα. (24)

Therefore, the coefficient vector of the theoretical limit of the
model space LM is reduced to

ĉTL
M = (HXX)−1GXZα. (25)

Generally, we can not construct this theoretical limit from the
given training data set even if it is noise-free on the contrary
to the single kernel case, since α is unknown.

On the other hand, the multiple kernel regressor based on
the training data set is formalized as follows.

Problem 2: Find the coefficient vector c of the model
Eq.(17) that minimizes

JM (c) = ||f̂(·)||2HKu
(26)

subject to
yi = f̂(xi), i ∈ {1, . . . , `}. (27)

Note that the constraint Eq.(27) can be represented by

y =
n∑

p=1

GXX
Kp

c(p) = (GXX)′c, (28)

where GXX = [GXX
K1

, . . . , GXX
Kn

]′ and the criterion Eq.(26) is
reduced to

JM (c) = c′HXXc. (29)

The solution of Problem 2 is easily obtained as

ĉ2 = (HXX)−1GXX{(GXX)′(HXX)−1GXX}−1y (30)

as shown in [14], [6].
The following theorems are the important results obtained

in [6].

Theorem 2: [6] Let f̂2(·) be the estimated function by ĉ2,
then

〈f(·) − f̂2(·), f̂2(·)〉HKu
= 0 (31)

holds.
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Theorem 3: [6] The estimated function by the solution
of Problems 2 is identical to the estimated function by the
solution of Problem 1 with K = Ku.

Theorem 2 implies that the estimated function by the
coefficient vector obtained by Problem 2 is the orthogonal
projection of the unknown true function f(·) onto a certain
linear subspace L̃M ⊂ LM ; and Theorem 3 implies that L̃M

is reduced to

L̃M = span{Ku(·, xi) | i ∈ {1, . . . , `}}, (32)

which gives the negative conclusion for the advantage of the
model Eq.(17) of the multiple kernel regressor.

In [6], we proved Theorem 3 by comparing the solutions
Eqs.(16) and (30). Therefore, it did not lead the intuitive
interpretation of the theorem since mathematical structures
specified by the corresponding criteria were vanished in the
solutions.

IV. A SIMPLE PROOF FOR THEOREM 3

In this section, we give a simple proof for Theorem 3 in
which the roles of 2-norm-based criteria are revealed.

Since Ku =
∑n

p=1 Kp, we have
∑n

p=1 HXX
Kp;Kq

= GXX
Kq

and
∑n

p=1 GXZ
Kp

= GXZ
Ku

. Therefore, the constraint Eq.(28)
can be represented by

(1′
n ⊗ I`)GXZα = (1′

n ⊗ I`)HXXc, (33)

where 1n, I`, and ⊗ denote the n dimensional vector whose
elements are unity, the identity matrix of degree `, and the
Kronecker product of two matrices [15] defined by

A ⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq

for A = (aij) ∈ Rm×n and B ∈ Rp×q , which implies that
the constraint Eq.(28) for the minimum empirical error can be
regarded as the linear equation Eq.(24) that ĉTL

M must satisfy,
degenerated by pre-multiplying (1′

n⊗I`). Thus, we can rewrite
the criterion of Problem 2 as

JM (c) =
1
2
c′HXXc−µ′(1′

n ⊗ I`)(GXZα−HXXc), (34)

with the Lagrange multiplier µ. Then, we have

JM (c)
∂c

= HXXc − HXX(1n ⊗ I`)µ = 0.

Therefore, we have

c = (1n ⊗ I`)µ, (35)

which trivially implies c(1) = · · · = c(n). Also, substituting
Eq.(35) to the constraint Eqs.(28),(29), and (17) yields the
constraint

y = GXX
Ku

µ, (36)

the criterion
JM (µ) = µ′GXX

Ku
µ, (37)

and the model

f̂(·) =
n∑

p=1

∑̀
i=1

c
(p)
i Kp(·, xi) =

∑̀
i=1

µiKu(·, xi) (38)

with µ = [µ1, . . . , µ`]′, which are identical to those in Problem
1 with K = Ku, which concluded the proof of Theorem 3.

Accordingly, the above proof reveals that
(1) the constraint for the empirical error minimization is the

degenerated version of the linear equation appeared in
obtaining the theoretical limit of the model space LM ,
and

(2) together with the above constraint, the criterion for the
minimum squared norm necessarily produces the coef-
ficient vector c(i) which does not depend on the index
p ∈ {1, . . . , n},

in the 2-norm-based multiple kernel regressor.

V. CONCLUSION

In this paper, we gave a simple proof for the equivalency of
the 2-norm-based multiple kernel regressor and the 2-norm-
based single kernel regressor adopting the sum of the kernels,
which was discussed in our previous work. Our proof obtained
in this paper revealed the roles of the constraint for the
empirical error minimization and the criterion for the squared-
norm of the estimated function.
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