
Score Normalization using Phoneme-based Entropy
for Spoken Term Detection

Hiromitsu Nishizaki∗ and Naoki Sawada†
∗ Faculty of Engineering, the Graduate School of Interdisciplinary Research,

† Department of Education, Interdisciplinary Graduate School of Medicine and Engineering,
University of Yamanashi, Kofu-shi, Yamanashi 400-8511 Japan
E-mail: {nisizaki, sawada}@alps-lab.org Tel: +81-55-220-8361

Abstract—This study investigates and demonstrates the ef-
fectiveness of utilizing the entropy of a query term in spoken
term detection (STD) for score normalization. It is important to
normalize scores of detected terms because the optimal threshold
for the decision process of detected candidates is commonly set
for all query terms. A query term with higher phoneme-based
entropy rather than the average entropy value of a query set is
probably difficult to correctly recognize using automatic speech
recognition. Thus, it cannot be detected with high accuracy if
the same threshold is set for all query terms. Therefore, we
propose a score normalization method in which a calibrated
matching score between a query term and an index made of target
spoken documents is dynamically calculated using phoneme-
based entropy of the query term on a dynamic time warping-
based STD framework. We evaluated this framework with query
entropy on an STD task. The result indicated that it worked quite
well and significantly improved STD performance compared
with the baseline STD system with a pooling-based evaluation
framework.

I. INTRODUCTION

Spoken term detection (STD) or open keyword search
(KWS), one of speech data retrieval technologies, is designed
to determine whether or not a given utterance includes a
query term consisting of a word or phrase. STD research
has become a hot topic in the spoken document processing
research field, and the number of STD research reports is
increasing in the wake of the 2006 STD evaluation organized
by National Institute of Standards and Technology (NIST) [1].
In particular, recently, some kinds of test collections such as
the NIST Open KWS tasks [2] and the MediaEval query-by-
example search on speech task [3] have been released.

Numerous STD studies have been proposed [4], [5] and
many STD systems have been developed. In recent times,
combination techniques for term detection from such STD
systems have been studied [6], [8]. When detection candidates
from multiple STD systems are combined, the STD score
calculation that determines the final output(s) of the query
term should be considered. If the dynamics of the STD score
of detection candidates generated by an STD system differ
from the other STD systems, the combined systems are highly
probable to fail. Therefore, score normalization (calibration)
calculated by each STD system is very important.

Furthermore, it is important to consider score normalization
when using only a single STD system. For example, the com-
puter environment, e.g., CPU and memory capacity, should be

considered [9]. All STD systems output detection candidates,
each of which has a detection score for an input query term. To
obtain the best STD performance for a query term, an optimal
threshold that determines whether a candidate is accepted as
a correct detection should be set. The optimal threshold value
varies according to the query term. For example, generally,
STD performance on evaluation measures, such as F-measure
[10] and term-weighted value (TWV) [1], of a short query
term is probable to be low because of false detected candi-
dates (false alarms), which reduces precision. Therefore, the
detection threshold should be set more strictly to reduce the
number of false detections, i.e., the threshold value should be
set relative to the input query term.

However, it is not necessary to set the threshold value for
a query term dynamically to calibrate the STD score of each
candidate. The score normalization allows us to use a common
threshold value for all query terms. This study focuses on STD
score normalization for a single STD system using phoneme-
based entropy of a query term.

In previous studies, we proposed a confusion network (CN)-
based indexing and a dynamic time warping (DTW)-based
search engine [11]. The CN-based index, which we refer to
as a phoneme transition network (PTN)-formed index [11],
comprised 10 types of transcriptions generated by 10 different
automatic speech recognition (ASR) systems, including a
large vocabulary continuous speech recognition system and
a phoneme ASR system. We demonstrated that the proposed
method outperforms other STD technologies that participated
in the 9th and 10th National Institute of Informatics Testbeds
and Community for Information access Research (NTCIR-9
and NTCIR-10) project STD evaluation frameworks [10], [12].
DTW-based matching between a subword sequence of a query
term and speech transcription demonstrates poor performance
for speech recognition errors. Therefore, the STD performance
of the DTW-based technique depends on the accuracy of
subword-based transcriptions. Our proposed DTW-based ap-
proach using a PTN-formed index for STD was very robust
for ASR errors.

However, this approach outputs a significant number of false
detections because the structure of PTN was complex. These
false detections degraded STD performance. In particular,
it seemed difficult for high entropy-query terms to detect
correct candidates when more stringent DTW score (cost)
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thresholds1 were set because ASR of high entropy-query terms
is probably more difficult compared with lower entropy-query
terms. Therefore, we expect that STD cost normalization that
considers entropy of query terms in the cost calculation can
uniform the threshold for accepting detected candidates and
possibly improve STD performance.

Score normalization techniques for STD have been studied
[6], [7], [8]. Mamou et al. [6] proposed a normalization method
based on query length (duration) [13]. They also proposed a
regression-based normalization method, i.e., a machine learn-
ing approach. The regression model used to calculate the STD
score is trained using six types of features. Abad et al. [7] and
Hout et al. [8] also investigated a linear logistic regression
approach for score calibration.

In contrast to these regression model approaches, we in-
vestigated score normalization using phoneme-based entropy
of a query term. The main idea of our proposed method is
to normalize the STD score directly using an entropy value
that depends on a query term. Our method is not a machine
learning approach; therefore, it is not necessary to train or tune
model parameters using much data for score normalization.
The approach explored in this study was inspired by our
previous study [14]. We attempted to use query entropy (QE)
to filter falsely detected candidates in the second STD process.
However, this approach did not perform well. Therefore, we
propose directly embedding QE into the cost calculation of
the DTW-based STD process. In this study, QE is calculated
by a phoneme-based trigram language model; therefore, QE is
nearly the same as the phoneme-based perplexity of a query
term.

As previously mentioned, the entropy of query terms is an
important factor for STD. However, to the best of our knowl-
edge, no STD studies have considered entropy (perplexity)
of a query term for an STD framework (including detection
engine and score normalization) assembled in an STD engine.
However, it should be noted that perplexity of a query term
has been investigated [15]. Most STD studies have focused
on utilizing information related to target spoken documents,
e.g., acoustical similarities [16], [17], [18] and lattice-based
score [15], [19], [20], [21], which are important parameters
for STD. This study demonstrates the effectiveness of query
entropy-based score normalization and improvement of STD
performance. Our approach is quite novel, and the contribution
of our study is to reveal the effectiveness of QE in a DTW-
based STD framework.

We evaluated the proposed STD framework with QE on
the NTCIR-10 SpokenDoc-2 moderate-size STD task. The
results show that the proposed framework works quite well
and significantly improves STD performance compared with
a baseline STD system that did not consider QE. However, our
approach does not affect the ranking of the detected candidates
because the QE value is fixed for each query term. Therefore,
it is particularly effective to determine an optimal threshold

1Because the DTW scores equal to the distance between the query and
PTN-formed index, the lower DTW score is better in the STD engine [11].
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Fig. 1. Overview of our STD framework.

and STD cost (or score) normalization.
The remainder of this paper is organized as follows. A

DTW-based STD using multiple ASR systems is described in
Section II. Section III provides analysis of entropy of a query
term and explains how to utilize it. Evaluation results are given
in Section IV, and conclusions are presented in Section V.

II. STD USING MULTIPLE ASR SYSTEMS

This section explains the baseline STD engine using the
DTW-based matching framework for calculating scores be-
tween a query term and a PTN-formed index.

Fig. 1 outlines the STD framework used in this study. In the
indexing phase, target speech data is transcribed by multiple
ASR systems, and their recognition outputs (word or sub-word
sequences) are converted into the PTN-formed index for STD.
In the search phase, the word-formed query is converted into
a phoneme sequence. Next, the number of phonemes and their
entropy are calculated. Finally, the phoneme-formed query is
input to the term detection engine.

A. Phoneme transition network
Fig. 2 shows an example of the development of a PTN-

formed index for “cosine” (Japanese pronunciation is /k o
s a i N/) by aligning N phoneme sequences from the 1-
best hypothesis of the ASR. We used 10 types of ASR systems
to create the PTN-formed index. The speech was recognized
by the 10 ASR systems to yield 10 hypotheses, which were
then converted into phoneme sequences (Fig. 2). Next, we
obtained “aligned sequences” using the dynamic programming
(DP) scheme previously described [22]. Finally, the PTN was
obtained by converting the aligned sequences. Here “@” in
Fig. 2 indicates a null transition. Arcs between the nodes in
the PTN have a few phonemes and null transitions with an
occurrence probability. However, in this study, we did not
consider any phoneme occurrence probabilities.

In this study, Julius ver. 4.1.3 [23], an open source decoder
for ASR, is used in all systems. Acoustic models are triphone-
based (Tri.) and syllable-based (Syl.) Hidden Markov Models
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speech utterance “Cosine” ( /k o s a i N/ )

ASR ID Outputs of 10 ASRs 
(all outputs are converted into phoneme sequence) 

ASR #1 k o s @ a @ @ i @
ASR #2 q o s u a @ a @ N
ASR #3 k o s @ a m a i @
ASR #4 k o s @ a @ @ @ N
ASR #5 k o s @ a @ @ @ N
ASR #6 @ @ s @ a @ @ @ N
ASR #7 b o s @ a a a @ @
ASR #8 @ @ s @ a b @ i @
ASR #9 @ @ s @ a @ @ @ N

ASR #10 @ @ s @ a @ @ @ N
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Fig. 2. Generating the PTN-formed index by performing alignment using DP
and converting to PTN (quoted from [11]).

(HMMs), both of which are trained on spoken lectures from
the Corpus of Spontaneous Japanese (CSJ) [24]. All language
models are word- and character-based trigrams as follows:

WBC : Word-based trigram where words are represented by
a mix of Chinese characters and Japanese Hiragana
and Katakana.

WBH : Word-based trigram where all words are represented
only by Japanese Hiragana. Words comprising Chi-
nese characters and Japanese Katakana are converted
into Hiragana sequences.

CB : Character-based trigram where all characters are
represented by Japanese Hiragana.

BM : Character-sequence-based trigram where the unit of
language modeling comprises two Japanese Hiragana
characters.

Non : No language model is used. Speech recogni-
tion without any language model is equivalent to
phoneme (or syllable) recognition.

Each model was trained using CSJ transcriptions.
The training conditions of all acoustic and language models

and the ASR dictionary are the same as in the STD/SDR
test collections used in the NTCIR-9 [10] and NTCIR-10 [12]
Workshops.

B. STD engine

The term detection engine uses the DTW-based word spot-
ting method. Fig. 3 shows an example of the DTW framework
between the search term “k o s a i N” (cosine) and the
PTN-formed index. The PTN has multiple arcs between two
adjoining nodes. These arcs are compared with the phoneme
labels of a query term.

We use edit distance on the DTW paths as cost, and the
costs for substitution, insertion, and deletion errors were set
to 1.0 when the number of phonemes comprising a query term
was N or greater. In contrast, the cost was set to 1.5 when
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Fig. 3. Example of term search on PTN-formed index (quoted from [11]).

the number of phonemes was less than N to avoid false term
detections in query terms having fewer phonemes. This cost
(=1.5) was optimized using a development query set.

Total cost D(i, j) at the grid point (i, j) (i = {0, ..., I},
j = {0, ..., J}, where I and J are the number of the set of
arcs in the index and query term, respectively) on the DTW
lattice was calculated using the following equations:

D(i, j) = min

⎧
⎪⎪⎨

⎪⎪⎩

D(i, j − 1) +Del
D(i− 1, j) +Null(i)
D(i− 1, j − 1)+
Match(i, j) + V ot(i, j)

(1)

Match(i, j) =

⎧
⎨

⎩

0.0 : Query(j) ∈ PTN(i)
1.0 : Query(j) ̸∈ PTN(i), J ≥ N
1.5 : Query(j) ̸∈ PTN(i), J < N

(2)

Del =

{
1.0 : J ≥ N
1.5 : J < N

(3)

Null(i) =

⎧
⎪⎪⎨

⎪⎪⎩

α
V oting(@) : NULL ∈ PTN(i), J ≥ N

β
V oting(@) : NULL ∈ PTN(i), J < N

1.0 : NULL ̸∈ PTN(i), J ≥ N
1.5 : NULL ̸∈ PTN(i), J < N

(4)

where PTN(i) is the set of phoneme labels of the arcs at
the i-th node in the PTN and Query(j) indicates the j-th
phoneme label in the query term. We allowed a null transition
between two nodes in the PTN-formed index with the cost
defined by Eq.(4). When the query term matches null (@) in
the PTN, a transition cost was set dinamically, as shown in
Eq.(4). V oting(@) indicates the number of ASR systems that
output NULL at the same arc. We refer to this as “null voting.”
α and β are hyperparameters, optimized using the development
set [10]. The appropriate null cost achieves increasing term
detection and decreasing false detections.
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“V ot(i, j)” in Eq.(1) is related to the false detection control
parameters [11] and is calculated as follows:

V ot(i, j) =

⎧
⎨

⎩

γ
V oting(p) :

∃p ∈ PTN(i), p = Query(j)
0.0 : Query(j) ̸∈ PTN(i)

(5)

We provided a parameter, V oting(p), to control false detec-
tion. V oting(p) is the number of ASR systems that output the
same phoneme p at the same arc. Higher V oting(p) values
increase the reliability of phoneme p. γ, which was set to 0.5,
is also a hyperparameter optimized by the development query
set [10].

In advance searches for the query term, the term detection
engine initializes D(i, 0) = 0. Next, it calculates D(i, j) using
Eq.(1) (i = {0, ..., I}, j = {1, ..., J}). D(i, J) is normalized2

by the length of the DTW path.
After completing the calculation, the engine outputs the

detection candidates, which have a normalized cost D(i, J)
below a threshold θ. Recall and precision rates for STD can
be controlled by varying θ.

III. ENTROPY OF QUERY TERM

A. Computation of entropy
QE is calculated on the basis of a phoneme sequence

of a query term using a phoneme-based trigram language
model. The trigram model is trained using the 2,525 lecture
speeches in the CSJ. Equations to compute the entropy of
a query term, which is represented as a phoneme sequence
p0, p1, · · · , pN−1, pN , are expressed as follows:

Entropy(Q) = −log2

{
N∑

i=0

P (pi|pi−2, pi−1)

}
(6)

N Entropy(Q) =
1

N
Entropy(Q) (7)

Entropy(Q) is the QE of Q, and N Entropy(Q), i.e.,
the normalized QE (NQE), is normalized by the number of
phonemes (N ) of Q. In this study, we use QE and NQE values
for calibrating an STD cost and will compare them on the STD
tasks.

When the NQE value of Q is higher than the average NQE
value for a query set, it is probably difficult to recognize it cor-
rectly using a phoneme-based ASR framework. In contrast, Q
with a lower NQE value may be easy to recognize. Therefore,
an entropy value of a query term affects ASR performance
of the query terms. In such a case, it also influences STD
performance.

B. Analysis of entropy
First, we compute the QE values of the query sets of the

NTCIR-10 large-size and the moderate-size task test collec-
tions. Both query sets have 100 query terms. TABLE I shows
the average QE values for each query category. We classify
query terms into four categories: number of phonemes (N ) is

2This normalization is not a proposed technique. It is a general normaliza-
tion procedure used in many STD systems.

TABLE I
AVERAGE QUERY ENTROPY VALUES FOR EACH QUERY CATEGORY.

category NTCIR-10 large-size task
QE NQE

ALL 42.2154 3.4614
N ≥ 10 47.0417 3.4332
N < 10 28.4789 3.5419

INV 42.1666 3.4445
OOV 42.2553 3.4753

NTCIR-10 moderate-size task
ALL 38.6903 3.5058

N ≥ 10 47.9468 3.4605
N < 10 26.9093 3.5635

INV 36.3300 3.3211
OOV 40.7834 3.6696

TABLE II
STD PERFORMANCE FOR THE HIGH-NQE SET AND THE LOW-NQE SET.

NTCIR-10 large-size task
Recall Precision F-measure MAP

ALL 0.399 0.741 0.470 0.677
High-NQE 0.343 0.653 0.407 0.646
Low-NQE 0.448 0.819 0.525 0.705

NTCIR-10 moderate-size task
ALL 0.380 0.599 0.405 0.583

High-NQE 0.275 0.486 0.304 0.518
Low-NQE 0.462 0.688 0.484 0.633

equal to 10 or greater, N is less than 10, in-vocabulary (INV),
and out-of-vocabulary (OOV)3. In fact, the average QE value
for the “N < 10” set on the two test collections is lower than
the “N ≥ 10” set; however, the average NQE value for the
“N < 10” set is higher. Furthermore, there are no differences
between the INV and the OOV query terms on phoneme-level
entropy.

Next, we perform STD [25] for each test collection. TABLE
II shows the STD performances evaluated by recall, precision,
F-measure, and mean average precision (MAP) values [10].
Each query set is classified into two groups based on ALL-
NQE in TABLE I. One is the high-NQE set, and the other is
the low-NQE set4. TABLE II shows that the low-NQE terms
are significantly better than the high-NQE terms. Therefore, it
is expected that entropy of a query term is effective for STD.

C. Entropy-based parameter for DTW matching using QE

We attempted to generate an entropy-based parameter for
DTW using QE or NQE of a query term, which is then
embedded into the computation of DTW cost between the
query term and a PTN-formed index.

Assume that BQE and BNQE are the reference values of
QE and NQE. BQE and BNQE are calculated by averaging
the QE and NQE values of all query terms in a query set,
respectively. An entropy-based parameter Q is defined as
BQE/QE or BNQE/NQE. It is applied to Eqs. (4) and (5). In
this study, we simply just multiply Q by the false detection

3The INV or OOV query term decision is based on the WBC language
model.

4For example, in the large-size task, a query term with NQE of 3.47 belongs
to the high-NQE set.
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control parameters in Eqs.(4) and (5), as follows:

Null(i) = Q×

⎧
⎪⎪⎨

⎪⎪⎩

α
V oting(@) : NULL ∈ PTN(i), J ≥ N

β
V oting(@) : NULL ∈ PTN(i), J < N

1.0 : NULL ̸∈ PTN(i), J ≥ N
1.5 : NULL ̸∈ PTN(i), J < N

(8)

V ot(i, j) = Q×

⎧
⎨

⎩

γ
V oting(p) :

∃p ∈ PTN(i), p = Query(j)
0.0 : Query(j) ̸∈ PTN(i)

(9)

In our STD system, a query with low entropy value can be
detected with better STD detection score (lower STD cost)
rather than one with high entropy value. The smaller a query’s
entropy value becomes, the larger its query-based parameter
Q becomes. In contrast, The larger a query’s entropy value
becomes, the smaller Q gets. Therefore, the Q parameter can
adjust the STD costs of detected terms for a query. In other
words, using the Q parameter makes the differences between
the detection costs for all the queries. Finally, we can adopt
the common detection threshold θ for all the queries.

Incidentally, we tried to investigate how to apply the Q
parameter to the DTW cost calculation on the development
set. As the result, the Eqs.(8) and (9) got the best performance
on the development set.

IV. EVALUATION

A. Experimental setup
We used the moderate-size task in NTCIR-10 SpokenDoc-

2 [12] as an STD task for evaluation. The evaluation speech
data is the Corpus of Spoken Document Processing Workshop.
It comprises recordings of the first to sixth annual Spoken
Document Processing Workshop (104 oral presentations, 28.6
hours). The word error rate of the presentations is 36.9%.

The number of query terms is 100, where 47 of the query
terms are INV queries included in the ASR dictionary of the
WBC language model, and the other 53 queries are OOV. Note
that there are 444 and 456 occurrences of INV and OOV query
items in the whole presentations of SDPWS, respectively.

We used two query sets to set BQE and BNQE values. One
is the query set from the NTCIR-10 large-size task (“open”
condition), and the other is the query set used in the STD
evaluation (“closed” condition). The query terms of the large-
size task are quite different from the terms of the moderate-size
task. Furthermore, parameters (α,β, and γ) in the DTW-based
STD engine are tuned using the test collection5 for STD in
NTCIR-9 [10].

The evaluation metrics used in this study are recall, pre-
cision, F-measure, and MAP [10]. These measurements are
frequently used to evaluate information retrieval performance.
F-measure values for the optimal balance of recall and pre-
cision values are denoted by “maximum F-measure” in the
evaluation graphs. In this study, recall, precision rates, and F-
measure values are calculated as micro-averages. MAP is a
macro-average measure for an STD query set.

5This is the development set.
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Fig. 4. Recall-precision curves of each STD system.

TABLE III
F-MEASURE AND MAP VALUES.

maximum F. MAP
Baseline 0.457 0.605
QE (closed) 0.568 0.594
QE (open) 0.562 0.591
NQE (closed) 0.475 0.603
NQE (open) 0.475 0.603

The STD performance for the query sets can be illustrated
by a recall-precision curve, which is plotted by changing the
threshold θ value on the STD costs of detected candidates by
each STD method. The θ value is the same for all query terms.

B. Experimental result

Fig. 4 shows the recall-precision curves for the baseline
system without score normalization and the STD systems
with score normalization using four types of entropy-based
parameters. TABLE III also shows maximum F-measure and
MAP values. The baseline system does not use any entropy-
based parameters. We demonstrate the effectiveness of the four
types of parameters for the STD task.

As shown in Fig. 4, all STD systems with score normal-
ization by entropy-based parameters outperformed the recall-
precision curve of the baseline because the score normalization
method worked well. In particular, the QE-based parameters
improved STD performance significantly because QE values
consider the length of a query term, whereas NQE values
do not. Furthermore, with regard to entropy-based parameter
computation, no difference between the closed condition and
the open condition was found. Thus, calculating reference
entropy values (BQE and BNQE) using an open term set is
not problematic.

Therefore, we confidently conclude that using query
entropy-based parameters for score normalization in a DTW-
based STD framework has the positive impact on STD per-
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formance. The normalization allowed a common threshold to
be set for all query terms. The micro-level evaluation that
considered all detected candidates of all query terms showed
improved performance.

As shown in TABLE III, the MAP values for the STD
systems with entropy are the same as the baseline MAP values
because the QE or NQE value is fixed for each query term.
Therefore, the detected candidates ranked in lower matching
cost-order are nearly the same as those output by the baseline
system. In particular, the introduction of an entropy-based
parameter is effective to determine the optimal threshold,
which is used to narrow the candidates and normalize STD
cost (or score).

V. CONCLUSION

We have proposed STD score normalization of the DTW-
based STD method using the entropy of a query term. First, we
showed that the QE value strongly affected STD performance
on the STD tasks. Next, we explained how to embed QE or
NQE of a query term into the DTW-based STD framework for
score normalization. The experimental results for the NTCIR-
10 STD task showed that both QE- or NQE-based param-
eters improved STD performance because the normalization
technique enabled a common threshold for all query terms.
In particular, the STD system with the QE-based parameter
significantly outperformed the system with NQE because the
number of phonemes was considered.

In future works, we plan to show that QE or NQE-based
features work well in a machine learning framework for
an STD task. Furthermore, we would like to demonstrate
the effectiveness of the score normalization technique for a
combination of multiple STD systems.
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