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Abstract— Fringe projection profilometry (FPP) is a popular 

method for accurate 3D model reconstruction. In a typical FPP process, 

a tedious phase unwrapping procedure is often needed to obtain the 

true phase information of the captured fringe images. However, 

conventional phase unwrapping algorithms often suffer from the 

ambiguity problems when the scene contains occlusions or sudden 

jumps in object’s height profile. In this paper, we propose an efficient 

decoding strategy to overcome the ambiguity problems. A novel 

coded fringe pattern is employed and a Gabor feature based 

discriminative dictionary is used to estimate the unknown period order 

of the wrapped phase. Experimental results show that the proposed 

method can achieve an accurate 3D reconstruction of objects’ model 

in various adverse conditions where traditional FPP methods often fail 

to perform.    

I. INTRODUCTION 

Optical three-dimensional (3D) scanning is an increasingly 

important and active research area in computer vision and 

image processing. It offers non-contact measurements of the 

3D information of objects that can be used in many applications 

such as industrial modelling and inspection [1, 2], 3D scene 

reconstruction [3, 4], and 3D face scanning [5], etc. Among 

various optical 3D scanning systems, the fringe projection 

profilometry (FPP) method is widely used because it can 

provide a fast, high resolution, and full-field measurement of 

the 3D information of objects using only a relatively low cost 

camera and projector. In a typical FPP setup, structured light 

patterns are first projected onto the target object. Due to the 

height profile of the object, the light patterns will be deformed 

as shown on the object’s surface. The deformed light patterns 

will then be captured by a camera. By analyzing the 

deformation of the light patterns in the captured images, the 

height profile and in turn the 3D model of the object can be 

reconstructed.  

According to the periodicity, traditional FPP methods can be 

divided into two groups, namely, the aperiodic FPP and 

periodic FPP. The aperiodic FPP requires the projection of a 

code pattern or a set of code patterns unto the object [8]. The 

patterns are specially designed to carry a unique set of 

codewords. Examples of the aperiodic fringe pattern is the 

graycode pattern [9, 10] and the De Bruijn pattern [11, 12]. 

Although the code patterns can give direct information of the 

objects’ 3D model, they can suffer from the interference due to 

the ambient illumination.   

In this paper, we focus on the periodic FPP [13-15]. The 

periodic FPP offers a salient advantage of being resistant to the 

ambient illumination. The key factor is the use of the phase of 

the periodic sinusoids (fringes) which is less likely to be 

influenced by distortions from various sources such as, object’s 

texture, global illumination, ambient light, etc. However, 

traditional FPP methods can only obtain the modulo-2�	or the 

wrapped phase information of the fringes [6, 7]. To solve this 

problem, traditional FPP methods adopt a phase unwrapping 

procedure. It assumes that the true phase difference between 

two neighbor pixels is less than	�. This assumption is known 

as the Itoh condition [16]. Based on such assumption, the true 

phase can be obtained from the wrapped phase by integrating 

the wrapped phase differences. However, such assumption is 

often not valid in practice particularly when the image scene 

contains occlusions or sudden jumps in object’s height profile.  

Recently many research works have been conducted to look 

for the solution to this problem. They use multiple cameras [3, 

18], multi-wavelength fringe patterns [19], fringe pattern with 

additional information, such as colours [20], markers [7, 21-

26], more frequencies [27, 28], extra patterns [1, 10, 29, 30], 

etc. These approaches either use additional hardware [3, 18] or 

need to project additional fringe patterns [1, 10, 29, 30]. 

Besides, some of these approaches can only perform in a simple 

scene, e.g. a scene contain only a single isolated object, a 

mono-colour object, etc. Furthermore, the estimation in these 

approaches is often performed in a heuristic way such as using 

the correlations with predetermined referenced coefficients [21, 

22].  

In this paper, a new phase unwrapping strategy is proposed. 

We employ a novel strategy which embeds to the fringe pattern 

some code patterns that indicate the true phase information. 

More specifically, for each period of the fringe pattern, a 

unique codeword (period order number) is assigned to a set of 

pixels and form a code pattern. The code patterns are 

specifically designed to fulfil two requirements: 1) they have 

different morphological structures from the original fringe 

pattern; and 2) the codewords they encoded are uniquely 

represented by the texture properties of the patterns, such as, 

orientations and scales. The first condition is essential to 

accommodate the separation of the fringe pattern and code 

patterns in the decoding stage. We achieve this by using the 

morphological component analysis (MCA) method [37]. The 
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second condition is to ensure that the codewords can be 

accurately detected and the period order can be estimated using 

a discriminative dictionary.  

This paper is organized as follows. We first present in 

Section II an overview on the FPP method. In Section III, the 

proposed coded fringe pattern is discussed. The proposed 

period order estimation using the Gabor feature based 

discriminative dictionary learning method is explained in 

Section IV. Finally the experimental results and conclusions 

are presented in Section V and VI, respectively.  

II. PROPOSED FPP FRAMEWORK 

For FPP, the phase shifting profilometry (PSP) method is 

commonly employed. In PSP, three fringe patterns with fixed 

phase shifts are projected onto the target object sequentially. 

These fringe patterns are deformed due to the height profile of 

the object. The deformed patterns will then be captured by a 

camera. The captured fringe images can be mathematically 

expressed as follows:  �� � � � � cos�
 � 2�/3	� �� � � � � cos�
	� �� � � � � cos�
 � 2�/3	� 

(1) 

where ��, �� , and ��  are the three fringe images; � is the DC 

bias; �  is the amplitude of the fringes; and 
  is the phase 

modulated by the depth (or the height profile) of the object. 

Note that the 3 fringes have a constant phase shift of  2�/3	. 
Thus the phase information	
 in (1) can be evaluated from the 

3 fringe images by,  


� � arctan � √3�� � ��2�� � �� � ��	� (2) 

The depth information of a scene is directly related to the 

absolute phase 
. However (2) gives only the wrapped phase 
� with limited value ranging from – � and �.  As mentioned 

above, traditionally the true phase 
 is estimated from 
�  by 

phase unwrapping procedures based on the Itoh condition. 

However, they will fail if some fringes are missing due to the 

aforementioned reasons.  

In fact, the true phase 
 is related to the wrapped phase 
� by 
 � 
� � �2� , where k is the period order or the so-called K-

map. If we know the k-value for all 
�, the phase unwrapping 

problem can be automatically solved. Hence rather than 

passively estimating the true phase 
 from the wrapped phase 
�, we propose to actively embed the k-value into the fringe 

patterns. After the fringe images are obtained, we propose to 

decode the k-values by using a sparse coding method with 

dictionary learned with a novel Gabor feature based 

discriminative dictionary learning algorithm. The period order 

information can then be used to evaluate the true phase 
. An 

overview of the proposed decoding algorithm is shown in Fig. 

1. It contains an offline dictionary learning stage and an online 

classification stage. They will be explained in more detail in 

Section IV. 

 

III. PERIOD ORDER ENCODED FRINGE PATTERN 

As mentioned above, the period order or the k-value is 

encoded and embedded into the fringe pattern before projecting 

to the target object. Hence a period order encoded fringe pattern 

should consist of both the code patterns which carry the period 

order information and a fringe pattern. Mathematically, an 

encoded fringe pattern can be expressed as,  

�� � � � � ̅ (3) 

where  "� # $�,�,� is the three phase shifting fringe patterns.  I ̅
denotes the code patterns which can be written as,   

� ̅ � '���
�� k:	* → ,- 
 → .
 � �2� / � 1 

(4) 

where ' is the encoding function for each k-value; and 1∙3 is 

the floor function to the closest smaller integer number.  

To generate the code patterns �,̅ we employ a set of textons, 

which are some predefined image patches that have different 

morphological structures from the fringe pattern. Fig. 2 shows 

a set of five unique textons (5×5 pixels). Each has a unique 

orientation and scale. Given a patch 4 ⊂ � ̅ and its associated 

period order �6, we define the encoding function ' of a patch 

as follows:  

4 � '7�68 � 9:6 (5) 

 
Fig. 2. Some of the binary textons (5×5 pixel) used to generate the code 

patterns.  

 
Fig. 3. A period order encoded fringe pattern whose code patterns are 

generated using the textons in Fig. 2.  

 

 
Fig. 1. Proposed FPP framework  
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where	9:6  is a unit texton to represent a period order � . An 

example of the encoded fringe pattern is illustrated in Fig. 3. 

Note that the design of the textons is not arbitrary. They should 

uniquely represent all k-values by means of their orientation 

and scale. 

IV. PERIOD ORDER ESTIMATION 

The standard procedure to decode a given code pattern is by 

measuring the correlation between the code pattern and the 

referenced data set [22]. It requires a search of the minimum 

distance between the code pattern and a set of reference codes, 

which can take a long computation time. Besides, the accuracy 

can be affected by the artefacts in the image, such as noise. 

Recently the discriminative dictionary learning methods are 

widely investigated. They can generate a set of dictionaries that 

can be extremely discriminative to particular patterns [31, 32]. 

This provides not only a more formal way to classify a given 

code pattern but also a faster performance through the sparse 

coding technique.  

In this paper, the discriminative dictionary learning method 

is adopted in the proposed period order decoding algorithm. As 

shown in Fig. 1, in the online stage, the period order estimation 

is done via a sparse coding step and needs a discriminative 

dictionary D, which is learned in the offline stage. Given the 

class labels of the training data, a discriminative dictionary can 

be obtained using various discriminative dictionary learning 

approaches, such as the LC-KSVD [32, 33]. When applying to 

the proposed FPP system, these class labels, which are the 

period orders of the training code patterns, are obtained during 

the calibration stage (offline), where they are known for all 

pixels. The details of the dictionary learning and the sparse 

coding are presented in the following subsections.   

A. Dictionary Learning  

To prepare for the dictionary learning process, a large 

number of high quality image patches with known period order 

needs to be obtained from the training code patterns. To 

achieve this, we project a set of training fringe patterns with 

embedded code patterns onto a flat surface such that all parts 

of the fringe patterns can be clearly shown and captured by the 

camera. With the captured fringe images, an MCA is carried 

out as shown in Fig. 1 to separate the fringe pattern and the 

code patterns. Then the training image patches are selected 

from the code patterns and their period order k can be obtained. 

Now let us define ;: � <4 := $�,…,?@  and A: � <B |B �ℱ74 :8= $�,…,?@  as a patch set and a patch feature set 

respectively. Here ℱ�∙� is a feature extraction function of a 

patch, and E: is the number of the training patches for each 

period order k in the set ;: . For each period order � , 256 

patches ( E: � 256 ) are selected randomly from the code 

patterns. Hence with period order � � 1, … , H , the total 

number of training sets is  E:H patches. 

For the feature extraction, we adopt the Gabor kernel. By 

convolving a patch 4 with a Gabor kernel of J scales, j=1…J 

and EI  orientations, J � "J�, … , J?K# , a vector of Gabor 

features can be obtained. Note that the vectors are in the form 

of complex numbers which can be written as, ℊMI �NMIO PKQ � 4 ∗ SMI, where ∗ denotes the convolution operator. 

We define the feature extraction function ℱ�∙�  of a patch 4 as, 

ℱ74 :8� TU7Vℊ11V8, … , U7Vℊ1EWV8, … , U7VℊX1V8, … , U7VℊXEWV8YZ
 

(6) 

where U�[�  is the mean of vector [ . We observe that by 

representing an image patch with Gabor features of at least 3 

levels and 6 orientations, a good estimation of the smooth 

region of the wrapped phase can be achieved.  

To generate a discriminative dictionary 	\,  the label 

consistent K-SVD (LC-KSVD) algorithm (version 1) [32] is 

employed. In LC-KSVD, a dictionary is learned by minimizing 

the following objective function [32], 

arg	min`,a,b ‖A � \Γ‖�� � ef‖g � hΓ‖��		i. k.		∀m, ‖n ‖o ≤ Z (7) 

where A � TB��, B��, … , B?@qq Y ∈ *s?K×?@q is the training 

feature set; ‖g � hΓ‖��  is the term to enforce the sub-

dictionaries in D to discriminate the input according to its class; ef is a constant to control the contribution of the corresponding 

term and  g ∈ *?@q×?@q  is the discriminative binary matrix 

which has a value determined by the period order �, 

g�m, u� � v1			mw		�� � 1�E: ≤ m ≤ �E: 		�xy�� � 1�E: ≤ u ≤ �E:0			{kℎON}miO																																							 (8) 

Note that the matrix \ and h are initialized using the discrete 

cosine transform (DCT) basis. In (7), Γ   is the sparse 

representation of A. We can further use it to generate the period 

order number (class label) by defining a linear classifier ~, 

which can be obtained by solving the following ridge 

regression problem: �N�	min� ‖� � ~Γ‖�� � e� ‖~‖� (9) 

where e�  is a constant to control the contribution of the 

corresponding term and � � �ℎ� …ℎq� ∈ *q×?@qis the class 

label (period order) of A . ℎ � �0,… ,1, … 0�� ∈ *q  is the 

period order corresponding to the input patch feature set B . (9) 

has a close form solution as follows:  

 
  

Fig. 4. A subset of the elements in the dictionary of 6-level 6-directional 

Gabor features (patch size: 6x6) generated from the 16x16 patch of the 
encoded fringe pattern. For each k value, the total number of dictionary 

elements is 32. The dictionary elements in each row provide a sparse 

representation for a particular code pattern.  
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~ � �Γ��ΓΓ� � e���� (10) 

where I  is the identity matrix. 

In the proposed method, 64 dictionaries for each period 

order are constructed using the patch feature set Z as the 

training set with 9 classes (labels) in total. The total number of 

elements is 576. A subset of the discriminative dictionary \ is 

shown in Fig. 4. In the figure, each row of the elements 

provides a sparse representation for a particular period order. 

B. Sparse Coding Step 

When the dictionary \  and the linear classifier ~  are 

learned, we can use them in the online stage for decoding the 

period order from the encoded fringe images. To do so, the 

captured encoded fringe images are first sent to an MCA 

process as shown in Fig. 1 to separate the code patterns from 

the fringe pattern. Image patches are then randomly selected 

from the good pixels of the code patterns. By good pixels, we 

refer to those do not belong to the background area, have a good 

quality value, and lie on the smooth area of the wrapped phase. 

The quality of a pixel can be obtained from a quality map that 

is determined using the approach as in [38]. Given a patch 

feature B � ℱ�4� of the code patterns, the dictionary \ and the 

linear classifier ~ , the sparse coding step gives a sparse 

representation n of the patch feature B by solving the following 

minimization problem using the orthogonal matching pursuits 

(OMP) approach [34],  n� � arg	min� ‖B � Dn‖�� 		i. k.			∀m, ‖n‖o ≤ Zo (11) 

where the period order of the patch 4 can be estimated by, 

�� � maxmy[�Wn�� (12) 

where max ���∙�  returns the index of the coefficient in the 

vector Wn� of which the value is the maximum. The results are 

then used to guide a multi-level quality guided phase 

unwrapping algorithm to obtain the true phase. More 

specifically, the scanline algorithm is adopted to unwrap the 

wrapped phase 
�  in two directions, up and down, until 

reaching either the boundary of the image, the bad quality map, 

or the background area. Once it is finished, this process is 

repeated until all pixels are unwrapped.   

V. EXPERIMENTAL RESULTS 

To verify the actual performance of the proposed strategy in 

practical working environment, we implement the proposed 

algorithm in a real FPP hardware setup and compare with 

different conventional FPP approaches. The hardware setup 

consists of a digital projector and a digital camera. The camera 

is equipped with a 22.2 x 14.8mm CMOS sensor and a 17-

50mm lens whereas the projector has a contrast ratio of 2000:1 

and a light output of 3300ANSI lumens. Both devices are 

placed at a distance of 700mm – 1200mm from the target object 

and are connected to a personal computer with a 3.4GHz CPU 

and 16GB RAM for image processing. All programs are 

developed in the MATLAB environment.  
 

TABLE I. Comparison in terms of the phase error (in × 10��Radians)  
for various total numbers of periods 

Number 

of 

periods 

PSP + 
Goldstein 

PSP-
Speckle 

Proposed 
method 

8 0.2541 1.1510 0.1788 

12 0.1478 0.5567 0.1185 

46 0.0038 0.0080 0.0036 

 

In the first experiment, we verify the performance of the 

proposed method when measuring the 3D model of a simple 

object. We use a flat board with size 500mm x 400mm as the 

target object in the experiment. The proposed algorithm is 

compared with two traditional approaches including: three step 

phase shifting profilometry with the Goldstein phase 

unwrapping algorithm (PSP+Goldstein) [35, 36], and PSP with 

speckles (PSP-Speckle) [22]. The PSP+Goldstein method is 

popularly used nowadays and the PSP-Speckle was newly 

proposed to tackle the phase unwrapping problem in FPP. 

Table I shows the comparison results. They show that when 

measuring simple objects, the proposed method can obtain an 

accurate measurement comparable to (if not better than) the 

conventional PSP method. Unlike PSP-Speckle, the proposed 

method does not introduce additional distortions due to the 

embedded code patterns.  

In the second experiment, we verify the performance of the 

proposed method when measuring the 3D model of objects 

with strong global illumination and sudden jumps in height 

profile. In the experiment, a jar is used as the target object. The 

jar is illuminated by a strong light source. Since the jar is placed 

in the middle of the table, it has a sudden jump in height profile 

as compared with the background. With such object, we 

compare the performance of the proposed algorithm with the 

conventional PSP+Goldstein [35, 36] and PSP-Speckle [22]. 

The result of the comparison is illustrated in Fig. 5. As can be 

seen in the figure, the PSP+Goldstein method generates 

 
               (a)                          (b) 

 
               (c)                          (d) 

Fig. 5. 3D Reconstruction of a jar with global illumination and sudden jump 

in height profile. (a) Conventional PSP+Goldstein, (b) the PSP-Speckle 

method, (c) the proposed method, and (d) ground truth.  
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incorrect depth information (Fig. 5a) since it does not have the 

period order information, and the Goldstein phase unwrapping 

algorithm fails to perform since the object has sudden jumps in 

height profile. Although the PSP+Speckle method can recover 

the depth information, the embedded speckles introduce 

artifacts to the reconstructed 3D model as can be seen in Fig. 

5b (zoom version). Meanwhile the proposed algorithm can 

reconstruct the 3D model of the object accurately as shown in 

Fig. 5c and is similar to the ground truth as shown in Fig. 5d. 

VI.  CONCLUSIONS 

In this paper, we presented a novel Gabor feature based 

discriminative dictionary learning method for decoding the 

period order information in the fringe pattern used for the FPP. 

The proposed approach solved the ambiguity problem when 

evaluating the true phase information in the FPP. It is achieved 

by first embedding the code patterns which carry the period 

order information to the fringe pattern. They are then extracted 

by an MCA procedure and decoded by a discriminative 

dictionary learned by the LC-KSVD algorithm. Based on the 

decoded period order information, the true phase can be 

obtained using a multi-level quality guided phase unwrapping 

algorithm. The proposed algorithm is robust to operate in 

various adverse conditions, such as the target object has sudden 

jumps in height profile or is illuminated strongly by a global 

light source. Experimental results have verified the robustness 

of the proposed algorithm as compared with other traditional 

FPP methods.  
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