
A Novel Pruning Model of Deep Learning for Large-
Scale Distributed Data Processing

Yiqiang Sheng†a), Chaopeng Li††, Jinlin Wang†, Haojiang Deng† and Zhenyu Zhao*
†National Network New Media Engineering Research Center,

Chinese Academy of Sciences, Beijing 100190, China
††University of Chinese Academy of Sciences, Beijing 100049, China
*University of Science and Technology of China, Anhui 230026, China

a)E-mail: shengyq@dsp.ac.cn

Abstract—In this paper, we propose a novel pruning model of
deep learning for large-scale distributed data processing to
simulate a potential application in the geographical neighbor of
Internet of Things. We formulate a general model of pruning
learning, and we investigate the procedure of pruning learning to
satisfy hard constraint and soft constraint. The hard constraint
is a class of non-flexible setting without parameter learning to
match the structure of distributed data. The soft constraint is a
process of adaptive parameter learning to satisfy an inequality
without any degradation of accuracy if the size of training data is
large enough. Based on the simulation using distributed MNIST
image database with large-scale samples, the performance of the
proposed pruning model is better than that of a state-of-the-art
model of deep learning in case of big data processing.
Keywords—deep learning, big data, distributed data, cloud

computing, internet of things.

I. INTRODUCTION

Deep learning [1][2][3] which aims at discovering higher
layers of representations with abstract concepts has achieved
impressive performance in many applications such as image
recognition, speech recognition, multimedia data processing,
information retrieval, human motion modeling and so on.
With the rapid development of communication technologies,
however, smart devices with huge amount of geo-distributed
data have been paving the way for the new era of distributed
big data and Internet of Things (IoT) [4][5]. Efficient
distributed big data processing based on things connected to
Internet has become a crucial requirement for many industrial
applications and services.
By collecting a number of computational resources together,

cloud computing [6] was one of the state-of-the-art platforms
to partly meet the challenge of big data by centralized data
storage and data processing [7][8][9]. However, ever-growing
requirements and techniques such as mobility-aware spatio-
temporal event processing and mobility-driven distributed
event processing [10][11] have been making the current cloud
computing inefficient due to expensive communication of
distributed data. For examples, cloud-based real-time services
of image, video, and multimedia are expensive because the
distances of communication between cloud and Internet of
Things are geographically far.
To improve the performance of cloud computing, geo-

distributed computing such as on-site service [12] and fog [13]

extends cloud to the verge of the Internet to geographically
improve the communication cost and the quality of real-time
services in many scenarios, such as smart traffic lights in
vehicular networks. Since the computational resources of
distributed computing is in the geographical neighbor of IoT,
the communication cost is reduced. It makes easy to provide
real-time services for end-users, but it leads to another
challenge to improve the efficiency of geo-distributed data
processing and to reduce the communication cost between
cloud computing and geo-distributed computing.
The main contributions of this research are as follows. (1)

We propose a pruning model of deep learning for large-scale
data processing to simulate a potential application in the
geographical neighbor of Internet of Things. (2) We formulate
the pruning learning to satisfy hard constraint and soft
constraint, and we define a cost function to evaluate the
generation error including the training error, the
reconstruction error as well as the regularization terms. (3)
We present the procedures of pruning learning, and we
modify the existing MNIST handwritten image database as
distributed benchmark to simulate geo-distributed data
processing. (4) Simulation shows that the communication cost
of the proposal is much better than that of a state-of-the-art
model of deep learning with shorter learning time and without
degradation of accuracy for big data processing. Simulation
also shows that the cost of above improvement is the speed of
convergence with respect to data size, but the final learning
time is actually improved.
The rest of this paper is organized as follows. Section 2

provides a review of foundations and related works. Section 3
formulates the pruning learning. Section 4 is the procedure of
pruning learning with constraints. Section 5 shows the
simulation of the proposal comparing with a state-of-the-art
model. Finally, Section 6 concludes this research.

II. FOUNDATIONS AND RELATEDWORKS

The abstract of learning a mapping from training data from
the viewpoint of function optimization was discussed by A.
Hirabayashi and H. Ogawa [14] with respect to projection
learning, partial projection learning, and averaged projection
learning to obtain good generalization capability, and devised
the concept of a family of projection learning which includes
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three kind of projection learning. This provided a framework
to discuss a general learning model.
As one of the pilot researches, a feature extraction scheme

as a pre-processor for neural network classification was
introduced by C. H. Chen and G. G. Lee [15]. It showed the
feature extraction scheme implemented by a non-stationary
Gaussian Markov random field could provide effective
features for neural network classification. By using Bayesian
learning, the further enhancement of the segmented result was
achieved. The formulation of the maximum a posterior
estimator was based on Gibbs prior assumption. The
maximum a posterior estimator could be found from neural
networks such as the Boltzmann machines. That is one of the
foundations of the proposed pruning learning model.
Based on the semi-supervised deep learning algorithms, D.

Luo, R. Yang and J. Huang [16] proposed a method to detect
the double compressed adaptive multi-rate audio, which was
served as a tool for authenticating the originality of audio
recordings and detecting the forgery positions. On the other
hand, R. Rui and C. Bao [17] proposed a supervised learning
algorithm for automatic classification of individual musical
instrument sounds deriving from the idea of supervised non-
negative matrix factorization algorithm. These are two of
typical applications of semi-supervised and supervised
learning model.
For distributed data processing, R. Tudoran et al [18]

proposed a system of data management for scientific
applications running across geographically distributed sites.
The environment-aware solution monitors and models the
global cloud infrastructure, and offers predictable data
handling performance for transfer cost and time. It provides
the applications with the possibility to set a trade-off between
money and time and optimizes the transfer strategy
accordingly. The system was validated on Microsoft’s Azure
Cloud across the 6 EU and US data centers. The experiments
show that the system is able to model and predict well the
cloud performance and to leverage this into efficient data
dissemination.
For distributed deep learning system using MapReduce, K.

Zhang and X. Chen [19] investigated a deep learning model
for restricted Boltzmann machines and back-propagation
algorithm. As one of the state-of-the-art models of deep
learning, deep belief net was trained in a distributed way by
stacking a series of distributed restricted Boltzmann machines
for pre-training and a distributed back-propagation for fine-
tuning. Through validation on the benchmark data sets of
various practical problems, the experimental results
demonstrated that the distributed deep belief net are amenable
to large-scale data with a good performance in terms of
accuracy and efficiency.
However, it is difficult for the above researches to meet the

increasingly higher requirement of distributed data processing.
Especially, the communication cost of distributed big data has
been one for the most serious problems. The state-of-the-art
model such as distributed deep belief net [19] was limited to
cloud computing. It is a big issue for distributed big data
processing to improve the overall performance such as

communication cost, computational efficiency, scalability,
security, etc.

III. FORMULATION OF PRUNING LEARNING WITH
CONSTRAINTS

Deep learning is a class of neural networks with deep
architecture. It attracts wide attention due to the excellent
performance of applications [20][21] with open source tools
and libraries [22][23].
Let the data sets be marked as D which includes Dtrain as

train sets, Dvalid as validation sets to select hyper-parameter
and Dtest as test sets to evaluate the generalization error with a
fair comparison between different models. Each data set D
could be a set of labeled data Y = {xi, yi} or a set of unlabeled
data X = {xi}. Let NL be the number of labels. Let ND be the
number of data. Let y be output. Let x be input. Let F be the
mapping of the model. Let θ be the set of all parameters.
The mapping of a pruning learning model is defined as the

following.
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where θp is the set of necessary parameters after the pre-
training of pruning learning.
The training error with respect to each label yi is defined as

the following.
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If the mapping between input and output is bidirectional or
symmetric, the reconstruction error with respect to each input
xi is defined as the following.
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The final objective is the generation error which measure
the error of a model with respect to a generalized data set. A
bidirectional cost function of a general learning model is
defined as the following.
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where l is the number of labeled data, n is the number of
unlabeled and labeled data, q is the number of regularization
terms, Eit is the training error with respect to each labeled
datum {xi, yi}, Eir is the reconstruction error with respect to
each unlabeled and labeled datum, λi is the weights of
regularization terms, L1 is the Lasso regularization term, L2 is
the Ridge regularization term, and so on.
To evaluate the training error more efficiently, the pruning

version of training procedure in experiments could be defined

(3)

(1)

(2)

(4)
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as minimizing the negative log-likelihood (NLL) with or
without regularization terms as the following.

 
i

p
ii

p xyyPDNLL ),(log),( 

To improve the scalability of deep learning model and
match the distributed structure of big data, the hard constraint
is designed as a class of non-flexible parameter setting
without learning process. The sets of big data are divided into
M sub sets according to the geographical sites, where M is the
number of end-user’s groups. As a learning system, deep
neural network with H +2 layers, where 0 ≤ h ≤ H +1, is
divided two levels by the layer of h = H* in the vertical
direction of the system. The layer of h = 0 is the input, the
layer of h = H* is the partition, and the layer of h = H +1 is
the output. Accordingly, the first level of the system is from
the layer of h = 0 to the layer of h = H*, and the second level
is from the layer of h = H* to the layer of h = H +1. Then, the
first level of the system is divided M sections in the horizontal
direction of the system, where M is the number of end-user’s
groups. The weights among different sections are zero as the
hard constraint.
Let the width of the deep learning system with H +2 layers

be Nw, then the width of each section in the first level of the
system is dm, where 1 ≤ m ≤ M, to satisfy Nw=∑dm. Let the set
of all neurons in the mth section of the first level be Sm. Let
any neuron on the (h-1)th layer in the mth section be Si(m),(h-
1)∈Sm, where 1 ≤ h ≤ H*. Let the set of all neurons in the oth
section of the first level be Om. Let any neuron on the lth layer
in the oth section be Sj(o), h∈So, where m≠o. Then, the weights
between Si(m),(h-1) and Sj(o), h satisfy a hard constraint of wi(m),
j(o), h=0.
To improve the communication cost without degradation of

accuracy, the soft constraint, named min-k-degree inequality,
is designed as an adaptive process of parameter learning. For
a non-hierarchical network, the min-k-degree inequality is
defined that the out-degrees of each neuron in positive
direction are at least k, where k is a hyper parameter. The
positive direction is from input to output.
Without the loss of generation, we assume all neurons are

completely connected with adjustable weights. Let the
number of all neurons be N. Let the network of neurons be
connected with non-zero weights, and let the non-connected
weight be zero. For the output of any neuron xj, where j = 1,
2, ..., N, with the set of its inputs X = {xi}, where i = 1, 2, ..., kj,
the following equation is satisfied.

)(
1


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where f is the activation function, bj is the bias, and wij is the
weight from neuron i to neuron j. For a general non-
hierarchical network, the min-k-degree inequality is defined
as the following.

kk j 

where k is a user-defined parameter.
For the hth hidden layer, the min-k-degree inequality is

defined as the following.

kkk hh
j  )()(

where kj (h) is the number of the set of inputs X = {xi} for the
output of neuron xj(h) on the hth hidden layer, k (h) is a user-
defined parameter for the hth hidden layer.
To evaluate the communication cost, a computer cluster

was described as a graph (V, E, ED, EF), where V is the
vertex set {i}, E is the edge set {eij}, ED is the set of edge
distance {edij} which is the geographical distance of
communication between cloud and internet of things, and EF
is the set of edge flow {efij} which is the data flow of
parameter communication between cloud and internet of
things. The communication cost was defined as CC = ∑ij edij
efij. For two-stage tree structure of computer cluster with a
core machine and M verge machines, the communication cost
was simplified as CCtree = ∑i edi efi. where edi is the
geographical distance between the core machine and the verge
machines, efi is the data flow between the core machine and
the verge machines using parameter communication, and M is
the number of the verge machines. In case of the parameter
communication, the data flow efij of communication between
cloud and Internet of Things equals to the number of
parameters Nij(θ).
The pre-training procedure is designed to minimize the

total number of parameters N(θ) = ∑ij Nij(θ) with some given
constraints with respect to the reconstruction error or the
generation error.

)(minarg 


Np 

where θ is the set of all parameters and θp is the set of
parameters after the pre-training of pruning learning.
Then, the training procedure is designed to minimize the

cost function with respect to the generation error as the
following.

),(minarg* DE p
p
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
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where θp* is the set of optimized parameters after the whole
training procedure of pruning learning.

IV. PROCEDURE OF PRUNING LEARNING WITH
CONSTRAINTS

The pruning learning is designed to construct the deep
learning system by gradually pruning the connection of neural
network until all constraints are satisfied during the pre-
training stage of minimizing the cost function. It is an

(6)

(7)

(8)

(9)

(10)

(5)
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unsupervised learning method using the set of unlabeled data.
The detailed pre-training procedure is as the following.

Procedure (I): The pre-training procedure of the pruning
learning.
Input: A given model of deep learning with the set of

parameter θ and the set of unlabeled data {xi}.
Output: A deep learning model with the set of pruning

parameters θp to satisfy min-k-degree inequality.
Step 1: Coding from Input layer as h=0 to Output layer as

h=H+1, where H is the number of hidden layers. Let h be -1.
Step 2: Initiating the parameters between the hth layer and

the (h+1)th layer. Let h be h+1.
Step 3: Adjusting the weights between the hth layer and the

(h+1)th layer and the bias of the (h+1)th layer to minimize the
cost function of the current two layers by using the set of
unlabeled data.
Step 4: If the weight is smaller than a threshold value,

calculating ΔEir which is the change of reconstruction error
with and without the current connection. Deleting the current
connection with the probability of min[1, exp(-ΔEir/Eir)].
Step 5: Judging that the out-degrees of the current neuron

in the positive direction is equal to k or not. If the answer is
NO, returning to step 3. If the answer is YES, shifting to the
next step.
Step 6: Judging that the cost function is smaller than the

second threshold value or not. If the answer is NO, returning
to step 3. If the answer is YES, shifting to the next step.
Step 7: Judging that the current h is larger than H or not. If

the answer is NO, returning to step 2. If the answer is YES,
ending the procedure.

V. SIMULATION

The evaluation of all models with optimization algorithms
was implemented by the simulation of a computer cluster
which consisted of core machines and verge machines
connected by 10Gbs switch using Python 2.7.8 [22] and
Theano 0.6 [23]. The core machine had 24 processors of
2.10GHz Intel Xeon E5-2620 CPU 32GB RAM and NVIDIA
GPU Grid K2 8GB GDDR5. The verge machine had two
processors of 2.50GHz Intel Core i7-4710MQ CPU 16GB
RAM and NVIDIA GEFORCE GTX 760 GPU 2GB GDDR5.
To simulate the structure of distributed data from Internet

of things, each MNIST handwritten image was splitted into M
parts as distributed MNIST database to allocate each part to
one of verge machines, and each splitted data set is with 50,
000 samples for training to optimize the given parameters, 10,
000 samples for validation to select hyper-parameter and
10,000 samples for testing to evaluate the generalization error
with a fair comparison between different models. Since the
MNIST images were size-normalized and centered in a fixed
size of 784 pixels, all splitted images were with a fixed size of
784/M pixels. The intensity was normalized to have a value in
[0, 1]. The labels are integers in [0, 9] indicating which digit
the image presents. Besides, the training set of MNIST with
50, 000 samples was copied with X times to evaluate the

scalability performance, where X = 2, 3, 4, ..., 10, ..., 50, ...,
100, ..., 1000, 10000.
We set M = 5 and k = 10 to test the performance of the

algorithms. The input layer has 784 neurons. The output layer
has 10 neurons. The default setting of hidden layers for the
tested model in each machine is as follows. The first hidden
layer has 580 neurons. The second hidden layer has 450
neurons. The third hidden layer has 310 neurons. The fourth
hidden layer has 160 neurons. The fifth hidden layer has 75
neurons. The regularization terms (Lj) include L1 and L2 with
λ1 = 0.00001 and λ2 = 0.00009. The remaining parameters of
each tested model are gradually optimized during the same
parameter learning process of deep learning systems with
different constraints.
The training procedure of the pruning learning is as the

following.

Procedure (II): The parameter optimization process of the
pruning learning.
Input: The set of pruning parameters of a given model of

deep learning θp and the set of unlabeled data {xi} and labeled
data {xi, yi}.
Output: A minimized cost function E(θ, D) with an

optimized set of parameters θp*.
Step 1: Let h be 1. Training the first layer (h) as a restricted

Boltzmann machine with given constrains that models the raw
input x = h0 as its visible layer (h-1).
Step 2: Using the above first layer (h) to obtain a

representation of the input that will be used as data for the
second layer (h+1). Two common solutions exist. This
representation can be chosen as being the mean activation
values P(h1=1│h0) or samples of P(h1│h0).
Step 3: Training the second layer (h+1) as a restricted

Boltzmann machine with constrains and taking the
transformed data as training examples for the visible layer of
that restricted Boltzmann machine with constrains.
Step 4: Let h be h+1. Iterating Step 2 and Step 3 for the

desired number of layers (h=H) with constrains, each time
propagating upward either samples or mean values.
Step 5: Fine-tuning all the parameters of this deep

architecture with respect to the cost function E(θ, D) or its
proxy as a training criterion, i.e. the negative log-likelihood
(NLL) with regularization terms.

We evaluated a non-pruning model of deep belief net (DBN)
[19], i.e. one of the state-of-the-art deep learning models,
which was trained by stacking a series of restricted
Boltzmann machines for pre-training and a back-propagation
for fine-tuning in a distributed way to get the best
performance in terms of error rate, running time and
communication cost. The communication cost of the
parameter optimization processes of the model is shown in
Fig. 1. We can see that the communication is expensive with
respect to the scaling of data size, so it is a necessary and
urgent problem that we have to solve. The learning time of the
parameter optimization processes of the model is shown in
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Fig. 2. The learning time is gradually increased with respect
to the scaling of data size.

Fig. 1 Comparison of the communication cost of distributed learning
systems.

Fig. 2 Comparison of the learning time of the parameter optimization
processes of distributed learning systems.

We evaluated the proposed pruning learning with hard
constraint and min-k-degree inequality in order to improve the
communication cost and the computational performance of
distributed data processing. As shown in procedure (I), the
pruning learning is used to construct an efficient deep
learning system by gradually pruning the connection of a
given neural network until all constraints are satisfied. The
communication cost of the parameter optimization processes
of the proposed pruning learning is shown in Fig. 1. For
distributed data processing, the communication cost of the
proposal is much smaller than that of the state-of-the-art
model of deep learning. The learning time of the parameter
optimization processes of the proposed pruning learning is

shown in Fig. 2. When the data size is 50, 000, the learning
time is much faster than that of the non-pruning model. When
the data size increases 1000 times, the learning time is more
than 2 times faster than that of the state-of-the-art deep
learning model.
In fact, the cost of above improvements is the slower speed

of convergence with respect to data size, but the total learning
time is actually improved because the pruning leads to the
reduction of the learning time for similar data size by
minimizing the number of parameters. Let the convergence
speed denote the improvement of error rates divided by the
data size as the following.

)(
))(( 00

dN
EEdNCS

i

i
i




where CSi is the current convergence speed, Ei is the current
error rate, E0 is the basic error rate, Ni(d) is the current data
size and N0(d) is the basic data size. Let the relative cost
denote the relative degradation of the convergence speed.
Based on experiments, the details of error rate, convergence
speed and relative cost with respect to data size are shown in
Table 1.

Table 1 The cost of above improvements is the speed of convergence with
respect to data size (Basic error rate: 10%; Basic data size: 50K)

Data
Size
(50K)

Error Rate (%) Convergence
Speed (%) Relative

Cost (%)No
Pruning Pruning No

Pruning Pruning

1 4.92 5.98 5.08 4.02 20.92

2 4.46 5.49 2.77 2.26 18.54

3 4.09 5.20 1.97 1.60 18.75

4 3.77 4.92 1.56 1.27 18.45

5 3.53 4.68 1.29 1.06 17.85

6 3.38 4.46 1.10 0.92 16.40

7 3.30 4.31 0.96 0.81 15.07

8 3.15 4.11 0.86 0.74 14.03

9 3.07 3.97 0.77 0.67 12.95

10 2.95 3.77 0.70 0.62 11.52

The basic error rate to calculate the convergence speed and
the relative cost is 10%. The error rate of the non-pruning
model and the proposal is gradually improved with respect to
the data size of learning. When the data size is small, the error
rate of the proposal is not as good as that of the state-of-the-
art model of deep learning. And the relative cost of
improvement with 10 times of data size is high (near 10%).
But it does not matter, because we care more about the final
result after learning and the error rate is gradually improved
with the data size increases. And the relative cost of
improvement with 30 times of data size is much lower (near
3%). When the data size is large enough, the error rate or
accuracy of the proposal is almost as good as that of the state-
of-the-art model of deep learning [19]. That is to say, the big
improvement of communication cost and learning time is with

(11)
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no degradation of accuracy when the number of training
samples are large enough according to the simulation.

VI. CONCLUSION

This paper has proposed a pruning model of deep learning
to process distributed big data more efficiently. We formulate
a general model of pruning learning. We investigate the
pruning learning with hard constraint and soft constraint to
satisfy a so-called min-k-degree inequality. Simulation shows
the considerable improvement of performance including
learning time and communication cost with scalability by
comparing with the state-of-the-art pruning model of deep
learning. For large-scale distributed data processing, the
communication cost of the proposal is much smaller than that
of the state-of-the-art model of deep learning with shorter
learning time and without any degradation of accuracy when
the number of training samples are large enough. The cost of
the above improvement is the slower convergent speed with
respect to data size, but the total learning time is actually
improved for distributed big data processing.
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