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ABSTRACT

This paper discusses using signal processing to assist in pro-
cessing of information for the smart grid. This consists of
getting information about the electrical grid and environment
via sensor networks, interpreting information received via
signal processing and machine learning, and then using the
information to make intelligent decisions about the grid us-
ing control and optimization algorithms. The focus is on
the electrical grid beyond the last substation, the distribution
grid. For the smart distribution grid there is an increasing
amount of distributed renewable energy sources and pos-
sible distributed storage. This necessitates gathering more
information about the electrical grid, environmental data, and
building energy usage. With this information we can forecast
distributed renewable energy sources and develop algorithms
for distributed state estimation. We can then develop de-
mand response algorithms to control loads (e.g. appliances,
thermostats, air conditioners, hot water heaters).

Index Terms— smart grids, sensor networks, distributed
estimation, demand response

1. INTRODUCTION

The electrical grid is undergoing some major changes as we
transform to an electric grid with large shares of renewable
energy sources, gathering detailed spatial and temporal in-
formation about the electrical grid and environment affecting
grid operations, and distributed decision making controlling
load usage. This paper focuses on some of the changes occur-
ring at the distribution level beyond the last substation. Here
we give an overview and discuss some of our work in each
of these three areas where signal and information processing
plays a major role: gathering data, data interpretation, and
making intelligent decisions based on the interpreted data.

The US government has defined features of the smart
grid in [1] which include enabling active participation of
customers, accommodating all forms of generation and stor-
age options, optimizing assets and efficient operations. Fa-
cilitating these features requires implementation of digital

technologies and concepts from information theory, commu-
nications, signal processing, and control that have been used
to advance information technologies and communications.

In recent years there has been significant attention given
to applying signal and information processing to smart grid
and energy problems. The IEEE Signal Processing Magazine
had a special issue on “Technical challenges of the smart
grid: from a signal processing perspective” that appeared in
September, 2012. The articles in the special issue addressed
some of the signal processing methodologies that are impor-
tant in the design and operation of the future smart grid [2].
In December, 2014, the IEEE Journal on Selected Topics of
Signal Processing had a special issue on “Signal processing
in smart electrical power grid” with twelve articles discussing
using signal processing for a variety of topics including state
estimation, electric vehicle charging, demand-side manage-
ment, fault detection, electricity market balancing, energy
consumption models, and power balancing [3]. The APSIPA
Transactions on Signal and Information Processing have also
had a special issue articles devoted to signal and informa-
tion processing for the smart grid, [4]. There have also been
special sessions at both the IEEE International Conference
on Acoustic Speech and Signal Processing and the Asia Pa-
cific Signal and Information Processing Annual Summit and
Conference devoted to applying signal processing methods
to smart grid and energy problems. Other recently created
IEEE Journals that focus on the smart grid and sustainable en-
ergy are the IEEE Transactions on Smart Grid and the IEEE
Transactions on Sustainable Energy. These two journals
and others from the IEEE Power and Energy Society often
use algorithms and approaches from signal and information
processing.

Here we focus on the electrical grid beyond the last sub-
station, the distribution grid. In the traditional legacy grid
the power is passed through the last substation and the dis-
tribution grid steps down the voltage through transformers to
eventually reach the customers (residential, commercial, in-
dustrial). This is changing with the introduction of distributed
renewable energy sources located at customer premises, en-
ergy storage devices, and electric vehicles hooking up to the
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distribution grid. The distribution grid can be a residential
community, military base, or a University campus. In fact
many Universities around the US and globally are looking at
their distribution grid and looking at transformations to con-
vert this to a smart microgrid [5, 6, 7, 8]. Smart microgrids are
defined by the Galvin Electricity Initiative as modern smaller
scale versions of today’s electricity grids [9]. These can be
distribution grids that not only generate, distribute, and reg-
ulate the flow of electricity, but can still function when sepa-
rated from the main grid [9]. It is envisioned that the future
electric grid may be decomposed into a hierarchical structure
with microgrids playing an important role and each hierarchi-
cal entity have some degree of autonomy and independence
[10]. In many cases these microgrids are owned by the com-
munity (e.g. University). Signal and information processing
play an important role in moving distribution grids to smart
microgrids with three key components listed below.

A smart microgrid needs a wide variety of data in order to
make intelligent decisions. This necessitates closer monitor-
ing of not only the distribution grid (voltage, current, and fre-
quency), but also other sources that will affect the distribution
grid. This includes environmental conditions that affect dis-
tributed renewable energy resources and energy consumption
in buildings. A key to getting good data is implementation
and placement of different sets of sensor networks. For the
electrical grid, smart meters that provide two-way communi-
cations such as Advanced Metering Infrastructure (AMI) can
be deployed. The number of sensors and their placement is
a resource allocation problem that can be formulated as an
integer programming problem [11, 12, 13].

Once we have gathered data about the electrical grid, en-
vironmental conditions, and building energy consumption we
can then interpret the data before making decision about us-
ing energy resources and performing demand response. This
includes forecasting of energy for distributed renewable en-
ergy resources and estimating the state of the distribution grid.
Good survey articles include [14, 15] which give overviews of
state estimation and some of the challenges presented for the
future electrical grid.

Once information has been assessed, then decisions can
be made concerning the distribution grid. This involves con-
trolling available resources including energy generation and
storage along with using demand response to intelligently
control loads. For demand response a wide variety of op-
timization approaches have been used ranging from using
linear programming [16], game theory [17, 18] and approxi-
mate dynamic programming [19, 20, 21].

This paper proceeds to give an overview of some of the
research activities in signal and information processing in
the Smart Campus Energy Lab (SCEL) at the University of
Hawaii. Section 2 discusses issues associated with sensor
network implementation and placement. Section 3 discusses
issues associated with performing distributed state estimation
given more distributed renewable energy sources, Section 4

introduces using optimization and control algorithms to do
demand response to control appliances. Finally, Section 5
summarizes the results of this paper and discusses directions
for further research.

2. SENSOR NETWORK IMPLEMENTATION AND
PLACEMENT

For the electrical grid there are a wide variety of smart meters
including AMI that provide two-way communications that
can receive information about pricing and energy usage from
the utility company. To monitor the environment there are a
number of professional weather stations that can be used in-
cluding those from Campbell Scientific [22], and Libelium
[23], however they are quite expensive. At a University cam-
pus such as the University of Hawaii at Manoa (UHM) there
are varying environmental conditions because of the way the
campus is situated at the front of Manoa valley. Cloud and
wind conditions can vary dramatically within a few hundred
meters. This requires a fairly dense placement of weather sta-
tions/ boxes to get both spatial and temporal coverage of envi-
ronmental conditions. Similarly, sensor networks can be de-
ployed to monitor energy usage in buildings. Our focus here
is on monitoring environmental conditions.

Building and deploying low cost weather boxes has turned
into an excellent undergraduate project for our students. The
students are tasked to build a low cost self-powered weather
box that is durable, reliable, provides accurate data, and is en-
ergy efficient. The students have used a dedicated microcon-
troller, XBee wireless communication device, discrete sen-
sors (including pyranometer), lithium ion battery, and a so-
lar panel to charge the battery [24]. Most of the key parts
are located on two PCB boards and the box is built using a
3-D printer made of Acrylonitrile Butadiene Styrene (ABS)
[24]. These weather boxes are self-powered and built to trans-
mit data even with several consecutive cloudy days at a frac-
tion of the cost of professional weather stations. Eventually,
there will be a network of these weather boxes deployed on
rooftops of the UHM monitoring environmental conditions
such as solar irradiance, temperature, humidity, pressure, and
wind speed and direction. The goal is to provide good tempo-
ral and spatial resolution around the UHM campus so that this
information can be used for forecasting of distributed renew-
able energy sources (such as distributed solar Photovoltaics
(PV)).

The cost of these weather boxes is around $400 [24], so
there is still the key question about how many weather boxes
are needed and where should they be placed to get good
spatial and temporal resolution of environmental conditions.
This problem is a resource allocation problem that can be
formulated in a number of ways. We could consider that the
weather boxes form a sensor network and we would like to
sample a subset of the weather boxes and estimate the state
of all the weather boxes given some information about the
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spatial correlations between data. This problem can then be
formulated as a sensor placement problem.

There has been substantial research on the sensor place-
ment problem from researchers studying sensor networks
with applications for environmental monitoring [25, 26],
monitoring the electrical grid with Phasor Measurement
Units (PMU)s [27, 28], and biomedical monitoring. Tools
from signal processing, statistics, and machine learning are
used. The problem is often framed as an optimization prob-
lem of minimizing some error criterion or maximizing some
information criterion. Once space has been discretized it can
be formulated as placing m sensors among n > m possi-
ble locations. In [11], PMU placement is considered where
observability is assumed and the goal is to optimize a given
cost function. The solution involves solving an integer pro-
gramming problem, which is NP-complete. However, an
approximate greedy solution is found that gives good results
and runs in polynomial time. The greedy algorithm is tied
to submodular and monotonic functions where bounds can
be obtained to the greedy algorithm in relationship to the
optimal algorithm [13]. In [29] a sensor selection problem is
considered for wireless sensor networks. A cost criterion is
formulated based on the Kullback-Liebler (KL) divergence
and Chernoff distances. The problem is also NP-hard, but
the authors propose a greedy approach to solve the problem
suboptimally.

In [12, 13] we formulated the static sensor placement
problem using a mean square error criterion and showed the
problem reduced to an integer programming problem that
becomes infeasible when the number of locations, n and
sensors, m become large. We found families of greedy al-
gorithms that run in polynomial time and also found upper
and lower bounds to optimal performance. These bounds
are based on generalized eigenvector decompositions and us-
ing matrix pencils. The problem is broadly applicable in a
number of domains including placement of weather boxes at
discrete locations, PMU placement, and placement of AMI
on a distribution grid. In [13] we conducted a number of
simulations on randomly generated data and also on an IEEE
57-bus test system. The simulations showed that greedy algo-
rithms that run in polynomial time give good approximations
to optimal algorithms and that we could find reasonably tight
lower and upper bounds to optimal algorithms. The cost cri-
terion used is the overall mean squared error at all n locations
(measurements are application dependent and could be in
terms of solar irradiation, voltage, or current).

3. DISTRIBUTED STATE ESTIMATION FOR A
SMART MICROGRID

Once we have gathered data from the electric grid, the en-
vironment, and information about energy usage in buildings
we can then interpret data using signal and information pro-
cessing. There is a variety of tasks that can be performed

including spatial and temporal forecasts of distributed PV en-
ergy generation and distributed state estimation. This Section
focuses on distributed state estimation for a distribution grid.

The electrical distribution grid beyond the last substation
consists of feeder lines that distribute power to customers. It
can usually be modeled as a radial network. Our goal is to
measure both voltages and currents on the radial network. As
we move towards a smart microgrid the radial network will
have smart meters deployed on the radial network and also
have distributed renewable energy sources such as wind and
solar PV energy generation. A simple radial network is shown
in Fig. 1. There may also be additional wireless communica-
tion capabilities on the radial network.

Fig. 1. Model of radial network with distributed renewable
energy sources and metering

We would like to perform state estimation for this radial
network finding voltages at nodes and currents at branches.
Here the circles represent distributed renewable energy gen-
eration (solar PV and wind) and the shaded squares represent
meters taking measurements. We can convert the radial net-
work into a factor graph as shown below in Fig. 2 [30].

Fig. 2. Conversion of radial network in Fig. 1 to a factor
graph

For this example there are three meters representing three
observations which are described by three nodes at the bot-
tom layer. The middle layer consists of nodes representing the
state of the radial network. The upper layer consists of func-
tional relationships giving the physical connections of the ra-
dial network and also describing the correlations between the
distributed renewable energy sources denoted by fs for solar
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and fw for wind.
For real distribution grids the radial networks are often

very large consisting of many nodes and connections in the
factor graph. For most radial networks the factor graph repre-
sentation is a tree if there are no distributed renewable energy
sources. For these networks distributed state estimation algo-
rithms such as message passing and belief propagation work
well and converge [31]. When we have distributed renewable
energy generation such as solar PV, loops are created in the
factor graph. The distributed solar PV generation is highly
correlated at close distance and is stochastic and intermittent.
We have performed belief propagation on factor graphs mod-
eling simple distribution grids with distributed renewable en-
ergy generators (DREG) and show that the algorithms con-
verge to good solutions [30, 32].

Currently, distributed solar PV generation is becoming
popular. Hawaii has the highest penetration of rooftop so-
lar in the United States with an average of 12% penetration in
residential communities in Honolulu, [33]. Because of this,
the local utility company, Hawaiian Electric Company is con-
cerned about the stability of the grid on certain feeder lines
with high percentage of rooftop solar. We can model these
distribution grids and feeder lines using the approach above.
However, with large amounts of distributed solar PV genera-
tion it becomes difficult. This is because there are many loops
to the factor graph resulting in difficulties when using algo-
rithms such as message passing and belief propagation [31].

We have examined solar PV data at different spatial lo-
cations and looked at the correlation matrix of solar irradia-
tion. The correlation matrix can be described via a graph with
nodes representing locations and edges representing the nor-
malized inverse of the correlation matrix. These graphs are
often fully connected, but in some cases we can make approx-
imations with sparser graphs. In [34] we explored using a re-
gret function and found a Markov chain approximation to the
graph. The approach was suboptimal and used an incremen-
tal Cholesky factorization. In [35] we considered using tree
apronximations for the correlation matrix graph. Here we use
the KL divergence as a cost function. The advantage here is
that there are efficient algorithms such as the Chow-Liu algo-
rithm that can easily be deployed when data is assumed to be
Gaussian [36]. We found that for graphs with larger number
of nodes, tree approximations were not always accurate, but
that the KL divergence could vary widely depending on the
tree approximation used. Using the Chow-Liu tree gave rea-
sonable approximations and could then be used in the factor
graph describing the distribution grid.

4. DEMAND RESPONSE FOR APPLIANCES USING
APPROXIMATE DYNAMIC PROGRAMMING

A fundamental equation of the electric grid is that energy gen-
eration must equal energy consumed. In fossil fuel power
plants and nuclear power plants the amount of electricity gen-

erated is deterministic. For the legacy grid energy generation
is known and can be added depending on loads. Loads are
random, but aggregate loads follow certain usage patterns de-
pending on time of day and time of year. Utility operators
can usually determine when to add and remove energy gen-
eration from power plants depending on the predicted loads
to supply sufficient amounts of power while optimizing as-
sets. The equations change when renewable energy sources
such as wind and solar are introduced. Wind and solar energy
are intermittent and stochastic. When there are large shares
of renewable energy on the grid, especially the distribution
grid we need good forecasting and ways of balancing energy
generation and energy usage. Some ways include energy stor-
age, but storage is often expensive. Other methods combine
forecasting, energy storage, and demand response.

Demand response can occur in homes by controlling ap-
pliance usage, setting thermostats and hot water heaters, and
controlling when electric car batteries are charged. The opti-
mization approach that is used depends on how the problem
is defined. Things to consider include the cost of electric-
ity, where energy is coming from (renewable sources or firm
sources), storage options, user load profiles, and comfort in-
dices. As mentioned in the introduction there has been many
different approaches to demand response including using lin-
ear programming, non convex programming, dynamic pro-
gramming, game theory, and approximate dynamic program-
ming (ADP). In this Section we focus on ADP as this allows
systems to learn load profiles and forecast renewable energy
production. This involves both exploring and exploiting the
state space to come up with good solutions. Conditions can
also change with time due to load profile changes and sea-
sonal weather changes. In previous work [19, 20, 21] use
ADP is used to control appliances, thermostats, and when to
charge or discharge an electric car battery.

Here we briefly discuss a current research project of con-
trolling a hot water heater using ADP. Water is a storage
medium for energy. Hydroelectric power is generated by
moving water from a high elevation to a lower elevation.
Cooled and heated water also contains energy that can be
used as storage. Our work is ongoing and based on [37]. The
problem consists of minimizing a combination of costs to
heat water in the hot water heater and the discomfort of the
customers when they do not get enough hot water. These are
modeled as a Markov Decision Process (MDP). The MDP
could be solved using a finite horizon dynamic programming
model however, we do not know the state and action transi-
tion probabilities. A key is to determine when to turn on the
water heater and when to turn off the water heater. Models
are formulated for how the water in the water is heated when
the water heater is turned on and how the water in the water
heater cools when the water heater is turned off. In addition
in our research lab we have a twenty gallon water heater with
sensing devices on the heater to conduct experiments on how
water in a water heater both warms up and cools down.

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 1241 APSIPA ASC 2015



For this problem we need to find information about how
residents use hot water. This consists primarily of taking
showers and using hot water for cleaning. This can be learned
from conducting surveys and also observing households over
a period of time. A finite horizon ADP problem can be then
formulated with the horizon being one day. Both time and
temperature of the hot water heater are discretized. Since
there are a large number of states, we aggregate both discrete
time and temperature. The ADP is shown to converge and
give a significant improvement over water heaters that have
fixed set points determined by time of day. Using ADP results
for the hot water heater involves predicting when a user will
take a hot shower. The ADP algorithm will typically turn on
the hot water heater well before the anticipated shower takes
place. Extensions include developing models for solar water
heaters to also predict solar energy and aggregating multiple
water heaters in a community to serve as distributed energy
storage.

5. SUMMARY AND FURTHER DIRECTIONS

This paper has discussed the gradual transformation of our
electric power grid into a smart grid. We have focused on the
distribution grid beyond the last substation which is moving
towards a smart sustainable microgrid. Here we show that
signal and information processing will play an important role
in this transformation. This paper gives an overview of areas
that my research lab has worked on to get and assess energy
and environmental data and to then use optimization tools to
perform demand response. This work is ongoing and will pro-
vide for a wide range of opportunities for signal and infor-
mation processing researchers interested in transforming our
electrical grid to a future smart grid.
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