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Abstract—We address a novel nonnegative matrix factorization
(NMF) with a new basis deformation method to handle various
music sounds. Conventional supervised NMF has a critical
problem that a mismatch between bases trained in advance
and an actual target sound reduces the accuracy of separation.
To solve this problem, we proposed an advanced supervised
NMF that applies a single time-invariant filter to the bases for
making them fit into the target sound. However, this method
suffers from limitations on basis deformation ability, especially
for transient instrumental sounds. In this paper, we propose a new
time-variant all-pole-model-based basis deformation method. Our
proposed deformation method consists of two types of filter that
individually deforms attack and sustain parts in one note. Each
of the all-pole models can be automatically selected and adapted
to the open data via a statistical signal sampling approach.
Experimental results show that the proposed method outperforms
conventional methods in many types of instrumental sound.

I. INTRODUCTION

In recent years, source separation based on nonnegative
matrix factorization (NMF), which is a type of sparse rep-
resentation algorithm, has been a very active area of signal
processing research. NMF for acoustical signals decomposes
an input spectrogram into a product of a spectral basis matrix
and its activation matrix. In particular, NMF is a promising
candidate for source separation in music signal processing with
a monaural format [1].

The methods of source separation based on NMF are
roughly classified into unsupervised and supervised algo-
rithms. The former method attempts the separation without
using any training sequences [2], [3], [4], [5]. The latter
method is called supervised NMF (SNMF), which includes an
a priori training process and requires some sound samples of
a target signal [6], [7]. However, such supervised techniques
have the critical problem that the separation accuracy is
markedly degraded by a mismatch between the trained basis
and the spectrogram of the actual target sound in open data.

To reduce the mismatch problem, we proposed a new SNMF
that applies a single time-invariant filter to the bases for mak-
ing them fit into the target sound [8]. However, this method
suffers from limitations on basis deformation ability, especially
for transient instrumental sounds, e.g., a piano sound that
is generated via different types of vibration mechanism in

each time duration. In this paper, we propose a new time-
variant all-pole-model-based basis deformation method. Our
proposed deformation method consists of two types of filter
that individually deforms attack and sustain parts in one note.
Each of the all-pole models can be automatically selected
and adapted to the open data via a statistical signal sampling
approach. Experimental results show that the proposed method
outperforms conventional methods in many types of instru-
mental sound.

II. CONVENTIONAL METHODS

A. SNMF

SNMF [6] consists of two processes, namely, a priori
training and observed signal separation, as described below in
detail. A priori basis training is carried out via NMF, expressed
as

Ytarget ≃ FGt, (1)

where Ytarget is an Ω×Ts nonnegative matrix that represents
an amplitude spectrogram of the specific signal used for
training, F is an Ω × K nonnegative matrix that comprises
the basis vectors of the target signal as column vectors, and
Gt is a K × Ts nonnegative matrix that corresponds to the
activation of each basis vector of F . In addition, Ω is the
number of frequency bins, K is the number of supervised
basis vectors, and Ts is the number of frames of the training
signal. Therefore, the basis matrix F is constructed by the
supervision of the target instrumental signal.

The following equation represents the decomposition of
SNMF with the trained supervision F :

Ymix ≃ FG+HU , (2)

where Ymix is an Ω × T observed spectrogram, G is a K ×
T activation matrix that corresponds to F , H is an Ω × L
matrix comprising the residual spectral patterns that cannot
be expressed by FG, and U is an L × T activation matrix
that corresponds to H . Moreover, T is the number of frames
of the observed signal and L is the number of basis vectors
of H . In SNMF, the matrices G, H , and U are optimized



under the condition that F is known in advance. Hence, FG
ideally represents the target instrumental components and HU
represents the other components after the decomposition.

The cost function for (2) is defined as

min
G,H,U

DKL(Ymix|FG+HU), (3)

where DKL(·|·) is a generalized KL divergence.
There are methods that involve imposing an orthogonal (or

probabilistic) restriction on the relationship between the target
signal and the nontarget signal in (3) to improve the separation
[7], [9], [10]. For example, in penalized SNMF (PSNMF) [7],
the cost function is described as

min
G,H,U

DP KL(Ymix|FG+HU)

= min
G,H,U

DKL(Ymix|FG+HU) + µ||FTH||2Fr,

(4)

where µ is a weight parameter and || · ||2Fr is Frobenius-norm.

B. SNMF with additive basis deformation (SNMF-ABD)

Conventional SNMF has the critical problem that a mis-
match between the trained bases and the target signal spec-
trogram reduces the accuracy of separation. To solve this
problem, SNMF-ABD has been proposed [11]. In this method,
the following equation represents the decomposition in SNMF-
ABD with trained supervision F :

Ymix ≃ (F +D)G+HU , (5)

where D is an Ω ×M additive basis matrix describing the
deformation and shares the activation matrix G with F . In
addition, M is the number of basis vectors of D. In this
decomposition, to adapt the supervised bases to the target
sound that cannot be represented by F , another basis matrix
D is imposed as a deformation term for F . Although D is
not exclusively nonnegative, some restrictions are imposed on
D so that F +D is nonnegative. The cost function for (6) is
given by

min
G,H,U

DKL(Ymix|(F +D)G+HU) + µ1||FTH||2Fr

+ µ2||FTD||2Fr + µ3||DTH||2Fr, (6)

where µ1, µ2, and µ3 are weight parameters.
However, this method has three problems. First, it is difficult

to adjust the three weight parameters. Second, this model
strongly depends on the initial values because of the com-
plexity of the cost function. These two problems are caused
by the difficulty of simultaneously optimizing deformation and
separation. Finally, this deformation is nonlinear. Therefore,
there is a risk that D will excessively deform the basis
and make it possible for an unwanted basis to describe the
nontarget signal.

Fig. 1. Block diagram of TID.

C. SNMF with time-invariant basis deformation (TID)

As described above, it is necessary to adapt the supervised
basis to the target signal spectrogram to deal with real music
sounds. However, it is difficult for SNMF-ABD to perform op-
timal basis deformation because it is a nonlinear deformation
and it optimizes the deformation and separation simultane-
ously. Therefore, we proposed a new SNMF introducing that
deform the basis carried out with a linear time-invariant filter,
namely an all-pole model, that consists of fewer parameters
[8].

A block diagram of the method is shown in Fig. 1. First, we
perform PSNMF with a current supervised basis F . Second,
using a generalized minimum meansquare error short-time
spectral amplitude (MMSE-STSA) estimator [12] (one of
the Bayesian estimators) with an estimated nontarget signal
Ymix − FG, we obtain an estimated target signal Y and a
binary mask I that extracts seldom overlapping components
with the nontarget signal from the estimated target signal Y .
Finally, we deform the original supervised basis Forg and
update F as a deformed basis. After some iterations of the
procedures, we conduct PSNMF using the deformed basis
and obtain the improved separation. The above-mentioned
concepts are described as

I ◦ Y ≃ I ◦ (AForgG), (7)

where I is an Ω × T binary mask matrix with entries
iω,t, which was obtained from the generalized MMSE-STSA
estimator, the entries of which were subjected to thresholding
(e.g., if Jω,t > 0.8, then iω,t = 1; otherwise iω,t = 0).
In addition, A is a diagonal matrix in which the diagonal
elements are described using the all-pole model. The elements



Fig. 2. Block diagram of basis division procedure.

of A are described as

Aω,ω =
1

|1−
∑p

k=1 αk exp(−πjk ω
Ω )|

, (8)

where p is the order and αk are the coefficients of the all-pole
model.

III. PROPOSED METHOD

A. Overview of proposed method

In the method described in the previous section, we deform
the trained basis using the linear time-invariant filter so as to
be suitable for source separation. In other words, supposing
that musical instruments are linear time-invariant systems, it
is possible for this method to eliminate the mismatch between
the trained basis and the spectrogram of the actual target
sound in open data. However, common systems of musical
instruments are not time-invariant but time-varying systems,
especially in the front of one note (called attack) and the rear
end of one note (called sustain) [13]. Therefore, the trained
basis can be deformed more suitably for source separation if
the trained basis is deformed independently according to attack
and sustain. In other words, the basis should be deformed using
time-variant filters to improve the quality of source separation.

Meanwhile, raising freedom of basis deformation is equiv-
alent to raising a risk to deform excessively, resulting in
wrong basis transformation into non-target signals because the
generalized MMSE-STSA estimator is a Bayesian estimator
that allows the statistical error to some extent. Therefore, it is
necessary to restrict freedom of deformation rationally.

In this section, we propose time-variant discriminative basis
deformation method introducing the following schemes. (a)
We focus on attack and sustain in one note (this is a time-
variant system) and deform the trained basis respectively. (b)
The deformation is carried out in a discriminative manner

to avoid the excess deformation and balance the deformation
and separation. The following subsections describe the detail
algorithms in each scheme.

B. Basis deformation with time-variant all-pole model using
generalized MMSE-STSA estimator

In this section, we propose a deformation method that
individually deforms attack and sustain parts in one note
using the generalized MMSE-STSA estimator. In the following
states, as shown in Fig. 2, we divide Forg into two sub-
matrices, F1 and F2 that respectively represent attack and
sustain part in one note. First, we separate the training signal
into two parts corresponding to attack parts and sustain parts.
Then we convert them into spectrograms Yatk and Ysus and
optimize (9) and (10) as

Gatk = arg min
G

D(Yatk|ForgG), (9)

Gsus = arg min
G

D(Ysus|ForgG). (10)

Taking summation of Gatk and Gsus in row elements, we
obtain excitation degree of each basis in the physical states
of musical sound, namely attack and sustain. Next, using this
excitation degree of each basis, we separate Forg into F1 and
F2 using k-means method. Note that the relation, [F1|F2] =
Forg, holds regardless of the row-wise permutation in Forg.

Second, we deform the clustered bases F1 and F2 according
to

I ◦ Y ≃ I ◦ (AF1G1 +BF2G2), (11)

where A and B are diagonal matrices in which the diagonal
elements are described using the all-pole model.

The cost function for (11) based on the generalized KL
divergence is given by

J =
∑
ω,t

iω,t

{
−yω,t +

∑
k fω,k,1gk,t,1
|Aω|

+

∑
l fω,l,2gl,t,2
|Bω|

+ yω,t log
yω,t∑

k fω,k,1gk,t,1/|Aω|+
∑

l fω,l,2gl,t,2/|Bω|

}
,

(12)

where yω,t, fω,k,1, fω,l,2, gk,t,1 and gl,t,2 are the nonnegative
elements of matrices Y , F1, F2, G1 and G2, respectively.
In addition, Aω represents 1 −

∑p
k=1 αk exp(−πjk ω

Ω ), Bω

represents 1−
∑p

k=1 βk exp(−πjk ω
Ω ) and βk is the coefficient

of the all-pole model of B. This cost function can be optimized
using auxiliary function technique (see Appendix) and we
obtain the update rule of gk,t,1, gl,t,2, αk and βk as

gk,t,1 ←gk,t,1(∑
ω

iω,tyω,tfω,k,1∑
k fω,k,1gk,t,1 + |Aω|

∑
l fω,l,2gk,l,2/|Bω|

)
/
(∑

ω

iω,tfω,k,1

|Aω|

)
, (13)



gl,t,2 ←gl,t,2(∑
ω

iω,tyω,tfω,l,2∑
l fω,l,2gl,t,2 + |Bω|

∑
k fω,k,1gk,t,1/|Aω|

)
/
(∑

ω

iω,tfω,l,2

|Bω|

)
, (14)

α =R−1r, (15)

β =W−1w, (16)

where α and β are the vectors of coefficients in the all-pole
model weight matrix A and B, respectively. In addition, R,
r, W and w are given by

Rm,q =
∑
ω,t

[
iω,t

(∑
k

fω,k,1gk,t,1
|Aω|3

+
yω,t

2|Aω|2∑
k fω,k,1gk,t,1∑

k fω,k,1gk,t,1 + |Aω|
∑

l fω,l,2gk,l,2/|Bω|

)
(
exp

(
−πj ω

Ω
(m− q)

)
+exp

(
πj

ω

Ω
(m− q)

))]
,

(17)

rq =
∑
ω,t

iω,t

[(∑
k

fω,k,1gk,t,1
1

|Aω|3
+

yω,t

2|Aω|2∑
k fω,k,1gk,t,1∑

k fω,k,1gk,t,1 + |Aω|
∑

l fω,l,2gk,l,2/|Bω|
)

(
exp(−πj ω

Ω
q) + exp(πj

ω

Ω
q)
)

− 3
∑
k

fω,k,1gk,t,1Re
[ (Aω)

∗

|Aω|3
exp

(
−πj ω

Ω
q)
)]]

,

(18)

Wm,q =
∑
ω,t

[
iω,t

(∑
l

fω,l,2gl,t,2
1

|Bω|3
+

yω,t

2|Bω|2∑
l fω,l,2gl,t,2∑

l fω,l,2gl,t,2 + |Bω|
∑

k fω,k,1gk,t,1/|Aω|

)
(
exp

(
−πj ω

Ω
(m− q)

)
+exp

(
πj

ω

Ω
(m− q)

))]
,

(19)

wq =
∑
ω,t

iω,t

[(∑
l

fω,l,2gl,t,2
1

|Bω|3
+

yω,t

2|Bω|2∑
l fω,l,2gl,t,2∑

l fω,l,2gl,t,2 + |Bω|
∑

k fω,k,1gk,t,1/|Aω|
)

(
exp(−πj ω

Ω
q) + exp(πj

ω

Ω
q)
)

− 3
∑
l

fω,l,2gl,t,2Re
[ (Bω)

∗

|Bω|3
exp

(
−πj ω

Ω
q)
)]]

.

(20)

C. Discriminative basis deformation

In our method, we use the generalized MMSE-STSA esti-
mator as a sampler to deform the bases F1 and F2. However,

its signal enhancement ability is not perfect. Since the output
of the estimator is still contaminated with residual nontarget
signals, there is a risk that the basis will be deformed to be
suitable for partially representing the nontarget signals if we
optimize only (11). In addition, a basis suitable for represent-
ing the target signal is not necessarily suitable for separation.
Therefore, we apply the idea of discriminative NMF [14],
which learns supervised bases while paying attention to the
separability of signals, to our proposed basis deformation.
Note that the method in [14] requires full supervision (i.e.,
all training samples of all the instruments are needed in
advance), but our method only requires semi-supervision (only
the target sample). First, we formulate this problem as bilevel
optimization as

A,B

= arg min
A,B

D
(
I ◦ Y |I ◦ (AF1G1s +BF2G2s)

)
s.t.G1s,G2s

= arg min
G1,G2,H,U

D
(
I ◦ Ymix|I ◦ (AF1G1 +BF2G2 +HU)

)
.

(21)

This bilevel optimization searches for the optimal basis defor-
mation matrix A and B under the constraint of minimizing
D(I ◦ Ymix|I ◦ (AF1G1 + BF2G2 + HU)) with respect
to G1, G2, H , and U . To minimize (21), it is reasonable
for AF1G1 + BF2G2 and HU to be independent. This
means that the basis deformation is prevented from repre-
senting the nontarget signal and is thus able to represent
the estimated target signal well. Since it is difficult to solve
the bilevel optimization problem, we propose the following
iterative algorithm that can derive an approximate solution to
the optimization.

Step 1 : Initialization

A,B = arg min
A,G1,B,G2

D
(
I ◦ Y |I ◦ (AF1G1 +BF2G2)

)
.

(22)
Step 2 :Modeling of Mixture Y mix

G1,G2 = arg min
G1,G2,H,U

D
(
I ◦ Ymix|I ◦ (AF1G1 +BF2G2 +HU)

)
.

(23)
Step 3 :Modeling of Target Y

A,B =arg min
A,B

D
(
I ◦ Y |I ◦ (AF1G1 +BF2G2)

)
.

(24)
Return to Step 2

This algorithm searches for the basis deformation matrix A
and B that minimizes D(I ◦ Ymix|I ◦ (AF1G1 +BF2G2 +
HU)) in the vicinity of the minimal D(I ◦Y |I ◦ (AF1G1+
BF2G2)).



Fig. 3. Scores of each instrument.

TABLE I
MAXIMUM VALUE OF SDR IN EACH MIXTURE [DB]

　　　 SNMF PNMF SNMF-ABD TID Proposed
Ob. & Pf. 7.6 6.7 8.1 6.7 7.0
Ob. & Tb. 1.5 2.4 2.6 2.8 2.9
Pf. & Ob. 3.0 4.1 3.6 5.2 6.1
Pf. & Tb. 1.9 3.1 3.2 4.5 4.5
Tb. & Ob. -0.6 0.7 0.2 2.4 2.8
Tb. & Pf. 1.8 2.9 3.4 3.9 4.4
Average 2.5 3.3 3.4 4.3 4.9

IV. EXPERIMENT

A. Experimental conditions

To evaluate the proposed algorithm, we compared the con-
ventional methods (SNMF, PSNMF, SNMF-ABD and TID)
and the proposed method by applying them to the separation
of two monaural instrumental sources. In this experiment, we
used three instruments, namely, a piano (Pf.), oboe (Ob.),
and trombone (Tb.). We separately generated three melodies
depicted in Fig. 3 using Microsoft GS Wavetable SW Synth
software (as artificial MIDI sounds), and two of the three
sources were selected and mixed with an input SNR of 0
dB. Training sounds were generated by Garritan Personal
Orchestra software (as different MIDI sound from the mixed
sound generator). Training sounds contain two octave notes
that cover all the notes of the target signal in the mixed
signal. The sampling frequency of all the signals was 44.1 kHz.
The spectrograms were computed using a 92 ms rectangular
window with a 76 ms overlap shift. The number of iterations
used in the training and the separation was 1000. Moreover,
the number of supervised bases F was 100 and that of bases
for matrix H was 30. We used the signal-to-distortion ratio
(SDR) as the evaluation score [15]. The SDR indicates the total
quality of the separated target sound, evaluating the degree
of separation between the target sound and other sounds and
the absence of artificial distortion. In TID and the proposed
method, the all-pole-model order is varied from 1 to 40. In
addition, the number of iterations of the whole processing in
Fig. 1 is 8.

B. Experimental results

Figure 4 shows a typical example of the SDR for SNMF,
PSNMF, SNMF-ABD, and the proposed method for the task
of separating Pf. from the mixture of Pf. and Ob. It can be
seen that the proposed method outperforms the conventional
methods.

Table 1 shows SDRs of SNMF, PSNMF, SNMF-ABD, TID
and the proposed method for extracting the target instrument
sound (the first of the two sounds) from each combination

All-pole-model order
8 16 24 32 40
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Fig. 4. Example of SDR for separating Pf. from mixture of Pf. and Ob.

of the instruments. All the parameters of each method were
manually optimized. From these results, it can be confirmed
that the proposed method increases the separation performance
compared with the conventional methods in all cases, except
for the pair of Ob. and Pf.

V. CONCLUSIONS

In this paper, we propose a new advanced SNMF that
includes time-variant deformation of the trained basis to make
it fit the target sound better than the conventional basis
deformation method. From the experimental results, it was
confirmed that the proposed method outperforms the conven-
tional methods in many cases.

APPENDIX
DERIVATION OF UPDATE RULES FOR TIME-VARIANT BASIS

DEFORMATION

This section expresses how to derive the update rules for
time-variant basis deformation, namely, G1, G2, A and B in
(11). The cost function for (11) based on the generalized KL
divergence is given by

J =
∑
ω,t

iω,t

{∑
k fω,k,1gk,t,1
|Aω|

+

∑
l fω,l,2gl,t,2
|Bω|

− yω,t log(

∑
k fω,k,1gk,t,1
|Aω|

+

∑
l fω,l,2gl,t,2
|Bω|

) + Cω,t

}
,

(25)

where Cω,t are unnecessary constants when calculating the
update rules. Since it is difficult to analytically derive the
optimal G1, G2, A and B, we define an auxiliary function
that represents the upper bound of J , as described below. First,
applying Jensen’s inequality to log(

∑
k fω,k,1gk,t,1/|Aω| +



∑
l fω,l,2gl,t,2/|Bω|), we have

J ≤
∑
ω,t

iω,t

{∑
k fω,k,1gk,t,1
|Aω|

+

∑
l fω,l,2gl,t,2
|Bω|

− yω,tηω,t,1 log(

∑
k fω,k,1gk,t,1
|Aω|ηω,t,1

)

− yω,tηω,t,2 log(

∑
l fω,l,2gl,t,2
|Bω|ηω,t,2

) + Cω,t

}
, (26)

where ηω,t,1 and ηω,t,2 are auxiliary variables. The equality in
(26) holds if and only if the auxiliary variables are set to

ηω,t,1 =

∑
k fω,k,1gk,t,1∑

k fω,k,1gk,t,1 + |Aω|
∑

l fω,l,2gk,l,2/|Bω|
, (27)

ηω,t,2 =

∑
l fω,l,2gl,t,2

|Bω|
∑

k fω,k,1gk,t,1/|Aω|+
∑

l fω,l,2gk,l,2
. (28)

Second, applying Jensen’s inequality and the tangent inequal-
ity, we have

J ≤
∑
ω,t

iω,t

{∑
k fω,k,1gk,t,1
|Aω|

+

∑
l fω,l,2gl,t,2
|Bω|

− yω,tηω,t,1

∑
k

ζω,t,k log
fω,k,1gk,t,1

ζω,t,k

+ yω,tηω,t,1(
1

2ρω
|Aω|2 +

1

2
log ρω −

1

2
)

− yω,tηω,t,2

∑
l

ϵω,t,l log
fω,l,2gl,t,2

ϵω,t,l

+ yω,tηω,t,2(
1

2σω
|Bω|2 +

1

2
log σω −

1

2
) + Cω,t

}
,

(29)

where ζω,t,k, ϵω,t,l, ρω and σω are auxiliary variables. The
equality in (29) holds if and only if the auxiliary variables
are set to ζω,t,k = fω,k,1gk,t,1/(

∑
k fω,k,1gk,t,1), ϵω,t,l =

fω,l,2gl,t,2/(
∑

l fω,l,2gl,t,2) and ρω = |Aω|2, σω = |Bω|2.
Third, to make the auxiliary function a quadratic form of |Aω|
and |Bω|, we conduct a Taylor expansion around τω and υω
respectively,

J ≤
∑
ω,t

iω,t

{∑
k

fω,k,1gk,t,1(
1

τ3ω
|Aω|2 − 3

1

τ2ω
|Aω|+

3

τω
)

+
∑
l

fω,l,2gl,t,2(
1

υ3
ω

|Bω|2 − 3
1

υ2
ω

|Bω|+
3

υω
)

− yω,tηω,t,1

∑
k

ζω,t,k log
fω,k,1gk,t,1

ζω,t,k
+

yω,tηω,t,1

2ρω
|Aω|2

− yω,tηω,t,2

∑
l

ϵω,t,l log
fω,l,2gl,t,2

ϵω,t,l

+
yω,tηω,t,2

2σω
|Bω|2 + Cω,t

}
. (30)

The equality of (30) holds if and only if τω = |Aω| and
υω = |Bω|. This approximation does not meet the condi-
tion of an auxiliary function, but if τω is updated as |Aω|
and υω is Bω, this approximation is equivalent to Newton’s
method. Finally, using the inequality Re[κ∗

ωAω] ≤ |Aω| and

Re[θ∗ωBω] ≤ |Bω|, we can define the upper bound function
J + for J as

J ≤
∑
ω,t

iω,t

{∑
k

fω,k,1gk,t,1(
1

τ3ω
|Aω|2 − 3

1

τ2ω
Re[κ∗

ωAω])

+
∑
l

fω,l,2gl,t,2(
1

υ3
ω

|Bω|2 − 3
1

υ2
ω

Re[θ∗ωBω])

− yω,tηω,t,1

∑
k

ζω,t,k log
fω,k,1gk,t,1

ζω,t,k
+

yω,tηω,t,1

2ρω
|Aω|2

− yω,tηω,t,2

∑
l

ϵω,t,l log
fω,l,2gl,t,2

ϵω,t,l

+
yω,tηω,t,2

2σω
|Bω|2 + Cω,t

}
. (31)

where Re[·] is a real part of ·, |κω| = 1 and |θω| = 1. The
equality of (31) holds if and only if κω = Aω/|Aω| and θω =
Bω/|Bω|.

A. Multiplicative update rules for activation matrices G1 and
G2

The update rule for J + with respect to the activation
matrix G1 is determined by setting the gradient to zero. From
∂J +/∂gk,t,1 = 0, we obtain∑

ω

iω,t

{
fω,k,1(

1

τ3ω
|Aω|2 − 3

1

τ2ω
Re[κ∗

ωAω] +
3

τω
)

− yω,tηω,t,1ζω,t,k

gk,t,1
)
}

= 0. (32)

By substituting the auxiliary variables into and simplifying it,
we obtain the multiplicative update rule of gk,t,1 as (13). In
addition, we similarly obtain the multiplicative update rule of
gl,t,2 as (14).

B. Update rule for all-pole-model weight matrices A and B

First, by differentiating J + partially with respect to αq ,
which is an coefficient of the all-pole model weight matrix
A, and setting it to zero, we obtain

p∑
m=1

αm

∑
ω,t

[
iω,t(

∑
k

fω,k,1gk,t,1
1

τ3ω
+ yω,tηω,t,1

1

2ρω
)

(
exp

(
−πj ω

Ω
(m− q)

)
+exp

(
πj

ω

Ω
(m− q)

))]

−
∑
ω,t

iω,t

[
(
∑
k

fω,k,1gk,t,1
1

τ3ω
+ yω,tηω,t,1

1

2ρω
)

(
exp(−πj ω

Ω
q) + exp(πj

ω

Ω
q)
)

− 3

τ2ω

∑
k

fω,k,1gk,t,1Re[κ∗
ω exp(−πj ω

Ω
q))]

]
(33)

= 0,



where 1 ≤ q ≤ p. Second, we define R and r as

Rm,q =

[
iω,t(

∑
k

fω,k,1gk,t,1
1

τ3ω
+ yω,tηω,t,1

1

2ρω
)

(
exp

(
−πj ω

Ω
(m− q)

)
+exp

(
πj

ω

Ω
(m− q)

))]
,

(34)

rq =
∑
ω,t

iω,t

[
(
∑
k

fω,k,1gk,t,1
1

τ3ω
+ yω,tηω,t,1

1

2ρω
)

(
exp(−πj ω

Ω
q) + exp(πj

ω

Ω
q)
)

− 3

τ2ω

∑
k

fω,k,1gk,t,1Re[κ∗
ω exp(−πj ω

Ω
q))]

]
. (35)

By substituting (34) and (35) into (33), we obtain

Rα = r, (36)

where α is the vector of coefficients in the all-pole model
weight matrix A. Since R is a Toeplitz matrix, we can derive
α using the Levinson–Durbin algorithm with a computation-
ally efficient form. In addition, we similarly obtain the update
rule of β, which is the vector of coefficients for the all-pole
model weight matrix B, as (16).
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