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Abstract—To achieve the goal of frontal vehicle detection in 
night-driving condition, we propose an effective method to detect 
the red taillights of vehicles. The challenge is that the taillight 
images captured with automatic exposure typically are 
overexposed, which makes red color segmentation often 
erroneous. Instead of customizing the camera hardware to tackle 
this problem, we combine morphological and logical operations to 
extract the overexposed region in taillights, which leads to a much 
more reliable taillight detection scheme. Then, we develop a 
robust pairing process that clusters two taillight candidates into a 
pair that represents a vehicle. Several criteria are considered in 
the pairing process, including the similarities of area, shape, and 
height of a pair of lights. In addition, we include the temporal 
consistency criterion; that is, a pair of taillights should be 
continually detected for a certain duration of time. An energy 
function is used to aggregate these criteria together. Our 
experiments show that both the missing and false detection rates 
are lower than 1.5%. 

I. INTRODUCTION 

When people driving at night, the frontal vehicles are mostly 
visible by their red-color taillights. Indeed, the worldwide 
motor regulations [1] specify the color and brightness of 
taillights. Although the light conditions vary drastically at night, 
the red taillights are rather robust and stable signals. Vehicular 
taillights appear as the brightest regions in a monochrome 
image captured at night; therefore, the simple intensity 
thresholding method was often used to detect taillights [2-5]. 
However, the ambient lighting conditions are complicated in 
the urban area and thus the vehicle taillights are easily confused 
with the other nonvehicle light sources.  

Most nonvehicle light sources can be removed using the 
color information. The most common approach makes use of 
the RGB color space [6-10]. Separate RGB thresholds for 
brightness and redness are implemented in [9]. Whereas in [7], 
only the red channel of the RGB data is processed. However, 
in the images captured with automatic exposure, the taillights 
often appear overexposed.  

The task of detecting taillights can be considerably improved 
by utilizing the new and nonstandard camera hardware [11-13]. 
O’Malley et al. [14] proposed a two-stage camera 
configuration. However, a piece of custom hardware may not 
be used for the other driver-assistance purposes. For example, 
the static exposure level is unsuitable for the ordinary image 
capture for dashboard driving recording. Furthermore, the 
custom hardware also adds cost and complexity to the 
automobile manufacturing. Finally, only some special cameras 
have the interface that is configurable by the user.  

Instead of customizing the hardware or configuring the 
exposure control of the camera, we combine morphological 
and logical operations to extract the overexposed central region 
of taillight, so that the taillights can be properly segmented. The 
proposed detection and warning process consists of two 
procedures. The function blocks of the taillights detection 
process are shaded in green in Fig. 1, and those of the taillights 
pairing and range estimation process are in purple in Fig. 1. 

II. OVEREXPOSED REGIONS EXTRACTION (ORE) FILTER 

It has been observed that taillight usually appear as white 
regions with red surroundings as they can partially saturate the 
image sensors [6, 7]. This “blooming” effect is shown in Fig. 
2(a). The perimeter of the overexposed white regions has been 
discussed in [6]. If the surrounding area is comprised mostly of 
red pixels, it is considered as a potential taillight. Based on this 
assumption, both red and white color thresholding are used to 
segment the taillights. A red and white color thresholding 
technique has been discussed in [15], where the test image 
frame is transformed from RGB to HSV color space. After hue, 
saturation, and value thresholding, the red and white pixels are 
extracted and marked as the red and gray pixels shown in Fig. 
2(b). To extract the overexposed central region, O’Malley et al. 
[15] uses a binary mask created from the bounding box of the 
red regions. This mask is applied to the white thresholded 
image to extract only the white regions that are adjacent to red 
regions. However, if some non-taillight white pixels appear in 
the bounding box, they are misclassified as the overexposed 
central region. 

Here, we design an overexposed regions extraction (ORE) 
filter to effectively extract the overexposed central region. First, 
instead of creating a bounding box of red regions, a 
morphological CLOSING operation is used to close the central 
region of the red halo. To properly extract the overexposed 
region of taillights of a front vehicle, a rectangle is overlaid on 
the captured area and its size is equal to half of the taillight 
diameter. As shown in Fig. 2(c), the central overexposed 
regions are well extracted even though the taillights are falsely 
connected.  

Next, to remove the false-connected areas, a logical AND 
operator is applied to produce the intersection of the closing 
region and the high intensity thresholding region. After this 
operation, the red surrounding and low intensity areas are 
removed. As the yellow-color pixels shown in Fig. 2(d), the 
overexposed central regions are effectively extracted and the 
false connected areas are removed.  
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Fig. 1 Flowchart of the proposed frontal vehicle detection and warning system. 

Thus, the complete ORE filtering can be described in 
Algorithm 1. 

We will need a rather precise estimate of the size of taillights 
to facilitate the taillights pairing process later. Therefore, the 
overexposed central region needs to be correctly extracted. In 
[16, 17], the Nakagami image was used to reduce the scattering 
noise generated by the non-taillights as shown in Fig. 3. 
However, the angle between the camera and the taillight must 
be small. Furthermore, the high reflectance rear bumper cannot 
be totally removed in the Nakagami image. On the other hand, 
our proposed method can handle the scattering property of 
taillights especially when the brake lights are lighted as shown 
in Fig. 3. If we use the ORE-filter-extracted yellow pixels in 

Fig. 3(b) to estimate the center, shape, and area of taillights, the 
light scattering problem can be effectively resolved. 
Furthermore, this procedure can exclude the nearby high 
reflectance areas. For example, the white rear bumper shown 
in Fig. 2(a) are rejected although it is very close to the taillights.  

III. REAR LIGHTS ISOLATION 

A pair of rear lights should be horizontally aligned on a 
captured image. Hence, a horizontal projection of pixels of rear 
light is used to separate rear lights at different heights as the red 
curves on the left side of Fig. 4(b). Then, a threshold is applied 
to create a few horizontal ROIs, which are marked by the 
yellow horizontal lines in Fig. 4(b). These horizontal ROIs 
contains pairs of rear lights at different heights. Then, the 
vertical projection of rear light pixels in each horizontal ROI is 
generated and one example is shown in Fig. 4(b) as the green 
curves at the bottom. Likewise, a threshold is used to create 
bounding boxes marked by the white vertical lines shown in 
Fig. 4(b). Each box contains an isolated rear light. The sum of 
the vertical projection in a bounding box is represented as the 
area of a rear light and the central moment of pixels in a 
bounding box is calculated below, which is denoted as the 
central point of a rear light.  

 (3) 

where x and y are the horizontal and vertical pixel coordinates 
inside a bounding box, respectively. The Ixy vlue is set to 1 if 

Algorithm 1 Overexposed Region Extraction (ORE) Filter 
Step 1. Identify areas with high intensity (Iwhite) and red 

color (Ired) by thresholding using the predetermined 
thresholds. 

Step 2: Morphological closing is applied to Ired to obtain a 
closed image Iclose 

 (1) 

Step 3: The intersection of Iwhite and Icolse is extracted by a 
logical AND operation, which removes the false 
closed regions and produces the taillight image 
Ilight. 

Closing  (2) 



the pixel at (x, y) is a rear light pixel; otherwise, it is 0. Then,  
and  are the coordinates of central moment indicated by the 
green cross in Fig. 4(a).  
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Fig. 2. The rear light extraction procedure. (a) The original image where the 
ROI is in the blue box. (b) The red color thresholding result Ired and 
the high intensity thresholding result Iwhite. (c) After the closing 
operation applied to Ired. (d) The extract rear lights. 
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Fig. 3. Another ORE filter results. (a) The detection result of near and far 
front vehicles. (b) The taillights filtering and extraction results of (a). 
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(b) 
Fig. 4. The rear light segmentation. (a) The original image. (b) After 

horizontal and vertical projections, the extracted rear lights are 
enclosed by bounding boxes. 

 
 
 



IV. TAILLIGHTS PAIRING 

A pair of taillights of a vehicle is usually symmetrical. Hence, 
a pairing process is designed to identify all pairs of taillights in 
the captured image. First, three criterions is used to eliminate 
the impossible pairs. Then, the normalized cross correlation 
coefficient is used to estimate the likelihood of this pairing. 

The first criterion is as follows. If the area difference 
between two candidates is greater than a threshold, they are not 
paired. However, the area difference of a near vehicle is greater 
than that of a faraway one. Hence, a normalized area difference 
dAmn between candidates m and n is defined below. 

 (4) 

where am and an are the areas of candidates m and n, 
respectively. The value of dAmn is in the range of [0, 1] and the 
smaller the better. The threshold is set to 0.2 in this work.  

Second, if the height difference between two candidates is 
greater than a threshold, they are not paired. Similarly, the 
height difference between two candidates should be 
normalized and we use the horizontal interval between a pair 
of lights to normalize the height difference. The normalized 
height difference term is defined as follows. 

(5) 

where hm and hn are the vertical coordinates of the centers of 
candidates m and n, respectively. And xm and xn are the 
horizontal coordinates of the centers of candidate m and n, 
respectively. We specify that the height difference between a 
pair of taillights should not exceed 10% of the horizontal 
interval between two taillights based on our observations.  

Third, a pair of candidates with abnormal aspect ratio should 
also be eliminated. In this work, we assume that the area of a 
pair of taillight should be proportional to the interval between 
them. Hence, we propose a ratio Rmn of the square of taillight 
horizontal interval (distance between a pair of taillights) to the 
average taillight areas as defined below.  

(6) 

where am and an are the area of candidates m and n, respectively, 
and w is the interval between candidates m and n. From our 
experiments, the thresholds T1 and T2 of most vehicles are 36 
and 180, respectively. 

If a pair of light candidates pass the aforementioned three 
criteria, an energy function is calculated to estimate the pairing 
likelihood probability. In addition to aforementioned area 
difference dAmn and height difference dHmn, the shape 
similarity and position tracking are also considered because the 
shape of a pair of taillights are generally the same. Furthermore, 
the frontal vehicle taillights should stay at similar positions for 
a number of frames.  

The shape similarity can be evaluated by using the 
normalized cross correlation coefficient NCC [18] as defined 
below 

 

(7) 

where A and B are two sets of pixels (candidates) to be paired, 
x0 and y0 are the top-left coordinates of the bounding box 
enclosing A. X is the column pixel numbers between A and B. 
Y is the row numbers of bounding box enclosing A and B. Note 
that the “convolution” operation is applied in the x direction 
due to the typical horizontal symmetrical property of a pair of 
taillights. The normalized cross correlation coefficient is in the 
range of [0, 1] and the larger the better. However, the total 
energy is the smaller the better; hence, the NCC item is 
subtracted from 1 in the energy calculation as shown in Eq. (8).  

Finally, the position tracking is included by checking 
whether there exist previously detected pairs founded in the 
nearby locations. All successfully paired taillight pairs are 
stored in a pairing list and each of them is assigned a detected 
number Nd. If a previously detected pair is founded on the 
pairing list, its detected number Nd will be attached to this 
candidate pair and will be used in the energy evaluation. 
Otherwise, its Nd is equal to 0. After the pairing process is 
completed, the Nd of the pairs that are not detected in the 
current frame is decreased by 1; otherwise, it is increased by 1. 
If the detected number Nd of a successfully paired taillights is 
equal to 30, it is labeled by a yellow bounding box as shown in 
Fig. 3(a). To normalize Nd in the range of [0, 1], it is divided 
by 30 since the maximum of Nd is 30. Next, to match the other 
energy terms, the normalized Nd is subtracted from 1 in the 
energy evaluation. The entire pairing energy Emn of a taillight 
candidate pair (m and n) is defined by Eq. (7). A smaller energy 
Emn means a higher probability of being a taillight pair. 

(8) 

V. RANGE ESTIMATION 

A forward collision warning (FCW) system in [19] was 
developed by combining a vehicle detection and a range 
(distance) estimation algorithms. The range R between the 
camera and the detected vehicles can be estimated as follows 
[5]. 

(9) 

where Hcamera and Hlight are the heights of camera and rear light, 
respectively. θ is the tilt angle of camera, and α is the angle 
between the rear lights and optic axis as shown in Fig. 5(a). 
However, the height of rear light varies significantly due to 
different types of vehicles. Hence, an average height of rear 
lights used in [5] is only an approximation.  

In this work, we use the vehicle width in the captured image 
to estimate the range of a frontal vehicle. To estimate the range 
of a detected vehicle based on its width, as shown in Fig. 5(b), 
the forward range R can be estimated by 
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(b) 

Fig. 5. The range estimation method. (a) The profile of camera and on road 
vehicle. (b) The schematic diagram of distance calculation. 

(10) 

where θ  and α are defined in Fig.5, and F is the distance 
between the center of vehicle and the center of camera lens. As 
shown in Fig. 5(a), α can be derived as 

(11) 

where h is the distance between the center of rear light and the 
horizontal central line in image and f is the focal length of 
camera. Then, F can be derived from their geometrical 
relationship. 

(12) 

where W is a presumed vehicle width and l is the interval 
between a pair of rear lights on image. On the other hand, f’ can 
be obtained by 

(13) 

Substituting Eqs. (11), (12), and (13) into Eq. (10) yields 

(14) 

However, the vehicle width W varies from 1.5m to 2.5m for 
different type of vehicles. In this work, the vehicle width is 
assumed to be 1.7m (medium value) and the range error caused 
by this presumed vehicle width will be discussed in next 
Section. 

VI. RANGE ERROR DUE TO PRESUMED VEHICLE WIDTH 

The vehicle width is typically in the range of 1.5m (a mini 
sedan) to 2.5m (a truck). The width of most popular sedans is 
about 1.7m. Since the width of a vehicle can vary from 1.5m to 
2.5m, an estimated range based on a fixed width was reported 
having only about 70% accuracy [20]. To study more precisely 
the range error due to vehicle width variation, let the actual 
vehicle width W’ be equal to W+δ, where δ is the difference 
between the actual vehicle width and the presumed vehicle 
width. From Eq. (14), the vehicle width l’ in an image is  

(15) 

Hence, the estimated range R’ can be derived by substituting 
Eq. (15) into Eq. (14) to yield  

(16) 

For example, the presumed vehicle width is 1.7m, if a frontal 
mini sedan (1.5m) is detected, the estimated range is equal to 
R/(1 - 0.2/1.7) ≈ R/0.88. On the other hand, if a frontal truck 
(2.5m) is detected, then the estimated range is equal to R/(1 + 
0.8/1.7) ≈ R/1.47. The relationship between R’ and δ is shown 
in Fig. 6. We observed that if δ is larger than 0 (i.e., the actual 
vehicle width is larger than the presumed vehicle width), then 
the range error is smaller (e.g., as shown in Fig. 6, ∆R2 is 
smaller than ∆R1). Furthermore, the range is underestimated; 
that is, the estimated range is smaller than the actual range. 
Hence, the driver receives an early warning, which is overly 
cautious but safer.  

 

    
Fig. 6.  The relationship between R’ and δ. 

On the other hand, if the presumed vehicle width is larger 
than the actual vehicle width, the range error is larger and the 
range is overestimated; that is, the actual range is smaller than 
the estimated range. This may lead to a dangerous situation, 
because the driver receives a late warned message. Hence, a 
smaller presumed vehicle width is better.  

Based on the safety consideration, a conservative choice is 
setting the presumed vehicle width to 1.5m. However, the 
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frontal range of a truck (2.5m) will then be seriously 
underestimated. Therefore, a more appropriate choice is setting 
the presumed vehicle to 1.7m because most on-road vehicles 
are sedans (i.e., W = 1.7m). In practical implementation, the 
default presumed vehicle width is set to 1.7m and it can be 
automatically switched to 1.5m based on the speed of vehicle. 

VII. SYSTEM CALIBRATION 

In practical situation, it is not easy to obtain f and θ. Hence 
we use a calibration process to obtain these two fixed values. 
If we assume the vehicle width W is also a fixed value, Eq. (14) 
can be represented by 

(17) 

where C1 = Wfcosθ and C2 = Wsinθ. In a practical calibration 
process, a pair of red LEDs are used to simulate a pair of 
vehicle rear lights and the interval between these two LEDs is 
equal to our presumed vehicle width, i.e., 1.7m. We placed 
LEDs at n different ranges; thus, Eq. (17) is repeated n times 
and can be concatenated into a vector-matrix form. 

(18) 

Then, C1 and C2 can be derived by using the least squared error 
method as follows  

(19) 

After C1 and C2 are obtained, the range value based on a pair 
of detected rear lights can be estimated by Eq. (17). 

VIII. EXPERIMENTAL RESULTS 

In this work, a Hitachi KP-F3 camera is in use, which has a 
physical pixel size of 7.4 μm(H) × 7.4 μm(V) and the image 
resolution is 640 × 480. Its focal length f is 15 mm and the tilt 
angle θ is equal to 10°. All captured videos are processed on a 
desktop computer and it is equipped with Intel Core2 Duo CPU 
E8400 3.0GHz and 3.46GB RAM. We use the Microsoft 
Visual C++ 2008 for coding and the OpenCV 2.1 library for 
decoding video, processing images and displaying the final 
results. We set a region-of-interest (ROI), whose height is half 
of the image height and is above the car hood. The whole 
algorithm can be completed in 1/30 second. Not only the near 
frontal vehicles but also the farther ones can be correctly 
detected as shown in Fig. 7(a). The detection rate is high even 
under dark night-driving condition. On the other hand, in the 
urban streets, the complex environment lights can be 
effectively filtered out and the taillights are correctly extracted 
and detected, and they are successfully paired as shown in Fig. 
7(b). 

A. Tracking-Based Detection 
Rear lights are easily mistakenly paired when two vehicles 

run in parallel and their rear lights are similar as shown in Fig. 

8(a). Furthermore, when the turn signal is on, the area of rear 
light is expanded as shown in Fig. 8(b). Under these conditions, 
the shape, area and height information of rear light are not 
sufficient to pair all candidates correctly. To increase accuracy, 
as discussed in Sections IV, the detected number of a rear light 
pair in the previous 30 frames is considered as a weighting 
factor in the pairing process. Hence, the pairing result is less 
interfered by a new coming vehicle as in the case shown in Fig. 
8(a). On the other hand, a successfully paired rear light pair is 
eliminated when it is not detected for 30 frames. The duration 
of turn signal is often shorter than 30 frames, and thus a pair of 
detected rear lights can be correctly tracked as shown in Fig. 
8(b). 

 

(a)  

 

(b)  
Fig. 7. The experimental results. (a) The detection result under low street 

light condition. (b) The detection result in a complex ambient light 
environment. 

B. False Alarm and Missed Detection 
To evaluate the type I error (false alarm) and type II error 

(miss), videos under different lighting conditions were 
collected including both the urban and the highway 
environments. For the FCW application, the missing rate is the 
ratio of the number of “missing” frames to the total number of 
frames. The false alarm rate is the ratio of the number of 
“falsely detected” frames (no front vehicles in the forward 
collision warning range) to the total number of frames. 
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(b) 
Fig. 8. The experimental results of (a) two vehicles run in parallel. (b) The 

size of a rear light pair is different when the turn signal is on. 

The range estimation error is difficult to evaluate under the 
dynamical true road condition unless we compare the 
estimation result with the data provided by a laser range finder. 
Although we do not have a laser range finder, the estimated 
range values in our experiments seem to match the human 
inspection. The key performance of our system is the high 
correct detection rate. Our experimental results are listed in 
Table I. Both types of error rates are less than 2% for total 13 
min (23280 frames) test video. 

TABLE I. 
SUMMARY OF EXPERIMENTAL RESULTS 

False Alarm (False Positive) Rate (%) 299 / 23280 = 1.284% 

Missed Detection (False Negative) Rate (%) 310 / 23280 = 1.33% 

IX. DISCUSSIONS 

As described in Section IV, the thresholds of qualifying 
terms can be selected based on the safety requirement. If the 
threshold is small, the missing probability increases but the 
false alarm probability decreases. It would be the opposite if 
the threshold is large. To reduce the missing probability, we set 
the threshold as high as possible until the false alarms is 
intolerable. Here, we discuss some missed detection and false 
alarm cases. 

A. Missed Detection Cases 
We examine the missed detection cases and find that one 

main cause is that the rear light is not very red as shown in Fig. 
9(a). Then, the overexposed central region of the rear light 
cannot be well extracted. That is, if most of the rear light pixels 
are not classed to red pixels as shown by the yellow circle in 
Fig. 9(b), the overexposed central region cannot be correctly 
identified after the closing operation. Furthermore, if the rear 
light is not red, for example, the light cover is broken or faded, 
the overexposed extraction algorithm may thus fail. There are 
other missed detection cases. For example, one of the rear light 
pair of a frontal vehicle is outside the image because the frontal 
vehicle is turning to left or right as shown in Fig. 9(c). 

B. False Alarm Cases  
Most false alarms occur in the urban streets due to the 

complex lighting conditions. However, under the traffic 
jammed condition, the complex rear light distribution can lead 
to mispairing as shown by the left-side green bounding box in 
Fig. 10(a). As we can see that the left rear light of a car is 
obstructed by a scooter rider and thus the unobstructed right 
light is paired with the right light of another front vehicle inside 
the green circle in Fig. 10(b). Fortunately, this front vehicle is 
on the left lane. The middle front vehicle is correctly detected 
and this false alarm can thus be neglected.  

C. Double Lights Cases 
Another abnormal detection is caused by double rear lights. 

As shown in Fig. 11(a), a duplicate pairing result is produced 
due to the vertically double rear lights. However, the range of 
the frontal vehicle can still be correctly estimated. Hence, this 
case is not a serious problem and it may be resolved by 
checking whether the bounding boxes of two pairs of rear lights 
are overlapped in the vertical directions. Fig. 11(b) shows a 
case of horizontal double lights. The pairing process is easily 
confused by the horizontal double rear lights due to their 
similar shape and close position. If one of the inner rear light is 
paired, the range of the frontal vehicle may be overestimated. 
Also, the inner and outer lights may interfere each other in the 
pairing process. In the future work, we may be able to reduce 
this type of errors by imposing additional checks based on the 
observations here. 

X. CONCLUSIONS 

In this paper, a frontal vehicle detection method is proposed 
particularly for night vision. The main cue we use in the 
evening frontal vehicle detection is identifying a pair of 
taillights. Several steps are needed to produce a reliable 
taillight pair detection. We first propose a simple yet effective 
extraction algorithm that extracts the overexposed central 
region of taillights. Then, the extracted regions are clustered 
and identified to be a pair of taillights belonging to a frontal 
vehicle. A deliberate pairing process is developed to pair the 
detected taillight candidates. In our experiments, the proposed 
method can effectively detect almost all vehicles under no-rain 
night-driving condition. Both the missing and the false alarm 
probabilities are under 1.5%. In addition, there are other 



interesting problems to be further explored. For example, how 
to estimate the range of one taillight vehicle such as the scooter 
is still an open problem.  
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(c) 
Fig. 9. The wrong pairing results under traffic jamming condition. (a) The 

detection result in traffic jammed condition. (b) The rear lights 
filtering and extraction results of (a). (c) One of the rear light pair is 
outside the image because the frontal vehicle is turning to left. 

 

(a) 

 

(b) 
Fig. 10. A false alarm case due to obstructed rear lights. (a) The detection 

result in the multiple obstructed vehicle condition. (b) The rear lights 
filtering and extraction results of (a). 
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(b) 

Fig. 11. Some missed detection examples of double lights. (a) The detection 
result of vehicle with vertical double lights. (b) The detection result 
of vehicle with horizontal double lights. 
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