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Abstract—This paper proposes an English lexical stress detec-
tion approach using acoustic features. The approach classifies
the vowels of English words into two patterns: primary stress
and unstress. We firstly choose the frame-averaged basic feature
set of the individual syllable nucleus in polysyllabic words as the
baseline to decide the stress pattern. This feature set includes the
semitone, the duration, the loudness and the emphasis feature.
Furthermore, we introduce the pitch-variation feature set and
the context-aware feature set to describe the inside variation
characteristic and outside contextual characteristic of the syllable
nucleus. By combining the three feature sets, the accuracy rate is
improved by 7%−8%. Besides, we train support vector machines
(SVMs) classifier for each vowel phoneme respectively. The
results show that the phoneme-dependent models performance
better than only one shared model. Finally, our system achieved
an accuracy of 88.6% compared with human-tagged labels.

I. INTRODUCTION

In recent years, Computer-Assisted Language Learning
(CALL) has been paid a lot of attention because of its
helpfulness for second language (L2) learners. The stress
detection technology in CALL is developed to help the learners
on the stress problem. In the stress-timed languages such as
English, the stress plays one of the most important roles.
Different syllabic stress position may express different parts
(e.g., import, increase) or different meanings (e.g., conduct,
desert) of the words. Besides, misplacing the stress may make
the words sound like nothing sometimes. So it’s very important
to pronounce lexical stress properly.

In the past few years, many lexical stress detection methods
have been explored. In these studies, many basic acoustic
features are used, such as the duration, the pitch, the energy,
MFCC and so on[1][8]. Besides these basic features, many
other acoustic features are explored. Reference [1] use the
slope- and range-related statistical features to represent the
change characteristics of the syllable coarsely. In [2], the
syllable contextual information is exploited and is viewed as
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the features of the word where the syllable located. They
extract the differential features among adjacent syllables and
combine them together to be one word-level feature. Moreover,
various acoustic models, such as Bayes[2], SVM[2][8], have
been used. However, most of these studies neither consider the
stress-related features completely nor consider the difference
of the feature distribution between vowel phonemes. So in this
work, we investigate the complementarity between different
features and combine them effectively. At the same time, the
acoustic model is refined in order to deal with the different
feature distribution between different vowel phonemes.

In this paper, we extract the frame-averaged basic features
as the baseline of the system to detect lexical stress. Then
in order to make up for the deficiency of the averaged
basic features, both the semitone variation features and the
differential features are extracted to represent the property of
the vowels. The semitone variation features are from TILT
parameter set, while the differential features are on the basis of
the averaged basic features. After that, the phoneme-dependent
SVM models are trained to classify the vowels as stressed or
unstressed. At last, the final stress pattern results are compared
to the human-tagged annotation and the prompt is given out
to the learners.

The rest of the paper is organized as follows: Section 2
describes the extraction of the acoustic features that were used
in our system and Section 3 specify the detection procedure,
including the classifier and post-processing. Section 4 states
the experiments that have been implemented and the result
they achieved. Finally, we draw the conclusions of our work.

II. THE EXTRACTION OF ACOUSTIC FEATURES

Orthographically, the syllable is the basic unit of the lexical
stress. According to the linguistic rules, each syllable is
comprised of only one vowel and one or more consonant(s).
But as described in [1], when the speech rate and rhythmic
flow of pronunciation are different, the partitioning results of
the syllables don’t always keep the same even though using
the same syllable parser. So this paper chooses the syllable
nucleus, which is the essential vowel center of a syllable,
as the basic unit to extract features and discriminate stress
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pattern. The boundary of the syllable nucleus is obtained by
the alignment of the speech and the transcriptions.

A. The Frame-Averaged Basic Features

In contrast to the unstressed syllables, the stressed ones
often have longer duration, higher intensity and higher F0.
In our work, we choose the following four features as the
baseline:

Duration
It has been proved in [9] that the syllable duration and the

syllable nucleus duration are almost the same in classification
performance. So we use the boundary information that is
produced by the forced alignments to obtain the vowel’s
duration. The duration is normalized by the mean duration over
all the syllable nuclei in the word which is called ROS(Rate-
Of-Speech)[10] standard technique.

Loudness
As one of the prosody event, the stress has close relationship

with human’s auditory characteristic. To better match with
the human perception scale, we substitute the energy for the
loudness here. Firstly, we calculate the energy of each frame (8
ms). Then the energy is passed through a set of triangle filters.
These filters have uniform distribution in Mel frequency scale.
The output energy of each filter is calculated by (1), the final
energy of each frame is calculated by (2):

M(i) = ln[
Fi∑

n=Fi-1

n− Fi-1

Fi − Fi-1
E(n)+

Fi+1∑
n=Fi

Fi+1 − n
Fi+1 − Fi

E(n)], (i=1,2,...,K),

(1)

L =
K∑

i=1

0.048M(i)0.6, (2)

where M(i) is the log energy that comes from the ith triangle
filter, E(n) is the energy value of the nth frequency point that is
calculated by FFT. Fi is the ith central frequency. Fi+1 and Fi-1

are the upper cut-off frequency and the low cut-off frequency
respectively. K is the number of the triangle filters, the value
of which is 26 in our work. L is the sum of loudness for one
frame.

Semitone
Based on the same point of view with loudness, we choose

the semitone rather than the F0 to better approximate the
human’s perception[5]. The transformation formula between
semitone and frequency is (3).

S = 69 + 12 log2(
f

440
), (3)

where S is the semitone and f is the frequency.
Spectral emphasis
The previous study [7] has shown that the mid-frequency

energy is more powerful in the stress classification than the
energy covered all frequencies. The mid-frequency is referred
to the frequency around 500-2000 Hz. Here we use a FIR filter
(Kaiser window) to obtain the energy within this bandwidth
as the spectral emphasis feature.

Moreover, the loudness L, the semitone S and the spectral
emphasis E are all first extracted in the unit of frame, and
then are averaged over all the frames of the vowels in order to
reduce the negative impact caused by different speakers and
speech rate following (4):

X =
∑j

n=i xn

j-i+1
, (4)

where X can be one of the L, S and E, i and j are the number of
the begin frame and the final frame of the vowel respectively.
xn is the feature value of each frame. All the four features
above are called “the averaged-basic feature” here.

B. The Pitch-Variation Features

In [1], the study points out that the pitch-related features
are effective in detecting the stress position, especially in the
case of English learning that the learner’s mother language
is tonal language such as Mandarin. Because in this kind of
language the pitch dictates not only word meaning but also
syllabic stress, and the mother-tongue’s negative transfer in
the cross-cultural learning is unavoidable. Our work follows
the rise/fall/connection (RFC) model proposed by Taylor[3]
and use the TILT parameter[4] set as features to describe the
shape of pitch contour.

The RFC model is one of the intonation models. It tries to
label the F0 contour as R (rise), F (fall) and C (connection).
Instead of the F0 contour, we use the semitone contour of each
syllable nuclei to extract the parameters. It’s more reasonable
since semitone is more suitable for the human’s auditory
perception. Firstly, the linear interpolation is implemented
to smooth away the outlier and perturbations of each frame
(0.064 s).Then the frame is marked with one of the three kinds
of shapes according to its slope. If the marks keep the same
in sequential frames, we will merge them together. After the
marking process, the amplitude, duration and tilt are measured
in these rises and falls. According to [4], the transformations
that produce these parameters are as follows:

tiltamp =
|Arise| − |Afall|
|Arise|+ |Afall|

, (5)

tiltdur =
Drise − Dfall

Drise + Dfall
, (6)

tilt =
|Arise| − |Afall|

2(|Arise|+ |Afall|)
+

Drise − Dfall

2(Drise + Dfall)
, (7)

where Arise and Afall are the sum of magnitude and Drise

and Dfall are the sum of duration of the rises and falls. F0
position and F0 height are calculated directly. In our work, we
choose the amplitude(tiltamp),duration(tiltdur),tilt(tilt) and F0
height(maxf0) as our features, and called these four features as
“the pitch-variation features”. These features are all extracted
using the Edinburgh Speech Tools Library(EST) tools.



C. The Context-Aware Features

In this paper, stress syllable is referred to “the ones which
are perceived as standing out from their environment” [1]. So
the lexical stress judgment of the syllables can’t be indepen-
dent of the contextual in the word. In our work, we consider
the contextual information as one of the vowel’s features. We
extract the differential value on the basis of the frame-average
basic features mentioned above as:

4BXp = Xp − Xp-1, (8)

4AXp = Xp − Xp+1, (9)

where X can be one of the duration D, the semitone S, the
loudness L and the spectral emphasis S. p is the index of
the vowel number in the word. BXp represents the pth vowel
differential value with its preceding one. AXp represents the pth
vowel differential value with its subsequent one. If the vowel
is the first or the last one in the word, it will always lack
one neighbor. In this case the relative value to the mean value
over all the syllable nuclei in the word will be calculated as
the differential value.

III. LEXICAL STRESS DETECTION

A. The Acoustic Classifier

Our method is implemented on the premise that the stress
of syllable has two patterns: primary stress and unstress,
not taking account of secondary stress. So in our work, the
stress detection is a two-class problem. We choose the support
vector machines (SVMs) to train the model. The SVMs is
widely used for its excellent ability of learning. This learning
algorithm is based on the statistical learning theory. It maps
the input vectors to a high-dimensional separable space using
various kernel functions and tries to find a hyperplane that
has the maximum margin between the support vectors in this
space as a discriminant boundary. Here the LIBSVM[6] is used
to train the phoneme-dependent models for the vowels, and
the Radial Basis Function (RBF) kernel is chose. Because the
probabilistic information is needed in the post-processing, we
set the probability estimation mode by making the parameter
b=1. Besides, the feature vectors are all scaled to [−1, 1]
interval before the training and testing procedure. Then at
last, the output of SVMs is stress classification results and
probability pairs (the probability of the stressed pattern, and
the probability of the unstressed pattern) for each vowel.

B. Post-Processing

By Linguistics definition, there is only one primary stress in
each word. Following [1], regarding the word as the basic unit,
we reassign the stress pattern after the detection procedure
using the probability estimated by the LIBSVMs like this:

1) If more than one syllable was detected as stressed pattern
in the word, we search among the probability of the stressed
pattern for all the syllables in the current word, and only
choose the syllable with the maximum probability as the
stressed one.
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Fig. 1. Flow of the lexical stress detection system

2) If no syllable was detected as stressed pattern in the word,
we search among the probability of the unstressed pattern
for all the syllables in the current word, and just choose the
syllable with the minimum probability to be stressed.

C. Framework of The Proposed System

Fig. 1 describes the framework of our system. All the
phoneme segmentation results are obtained by Automatic
Speech Recognition (ASR) with the learners’ speech and the
canonical transcriptions. Here we don’t take the phoneme
pronunciation errors into consideration and just focus on the
stress errors. We use the CMU phonemes set, which includes
fifteen vowels altogether. So we train fifteen models for each
vowel phoneme.

IV. EXPERIMENTS AND RESULT

A. Database and Evaluation

In the experiment, we use the MIR-SD (Multimedia In-
formation Retrieval lab, Stress Detection) database[11]. This
database is designed specialized for lexical stress detection of
multi-syllable English words. It is recorded by 22 Taiwanese
speakers with middling English level. Each speaker records



about 200 utterances. Each utterance contains only one multi-
syllable word, which is selected from the English spelling
contest for university students in Taiwan. There are 3668
words in all, 3000 words of which are chosen to train models,
and the remaining 668 words to test. The distribution of vowels
is listed in Table I. To evaluate the performance of our system,
we employ the detection accuracy, which is the ratio of the
correctly detected syllables to the sum of the syllables in the
whole test database.

TABLE I
THE DISTRIBUTION OF THE DATABASE

TrainNumber TestNumber

TotalWord 3000 668

TotalSyllable 10274 2230

StressSyllable 2970 668

UnstressSyllable 7304 1562

B. Features Performance Analysis

In order to verify the distinguish ability of each feature
mentioned above, we firstly train a single classifier for all the
vowel phonemes, ignoring the difference between them. The
detection results with the single SVMs model using only one
feature are shown as Fig. 2. It can be seen that all the features
are effective, especially the frame-averaged loudness, maxf0
and all the contextual-aware features. It’s also proved in some
respects that the contextual information is indispensable as a
property of individual vowels on stress. But in general, each
individual feature can’t achieve a satisfactory result due to
the limited ability. We should consider how to combine them
together effectively.
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To investigate the combination characteristics of these fea-
tures, we use the frame-averaged basic feature set, the pitch-
variation feature set and the contextual-aware feature set as
three units and combine them arbitrarily. The result is as Table
II.

TABLE II
THE PERFORMANCE OF FEATURE COMBINATION

Feature Accuracy(%)

Basica 78.30

TILT b 80.22

Deltc 81.35

Basic + TILT 83.95

Basic + Delt 81.44

TILT + Delt 84.75

Basic + TILT + Delt 85.47

a Basic represent the frame-averaged basic feature set .
b TILT represent the pitch-variation feature set.
c Delt represent the contextual-aware feature set.

From this table, we can see that both the pitch-variation
features and the contextual-aware features performance better
than the frame-averaged basic features. And these three ones
are all pairwise complemented. In detail, as the contextual-
aware features are extracted on the basis of the frame-averaged
features and the information between them crosses highly,
the complementarity of this pair is least remarkably. On
the contrary, there is strongest complementarity between the
contextual-aware features and the pitch-variation features. The
reason is that the pitch-variation features reflect the variation
characteristic inside the vowel while the contextual-aware
features reflect variation characteristic outside the vowel. The
two information are independent and indispensable. As a result
they can perform well as a whole. At the same time, both of
them can make up for the deficiency of the frame-averaged
basic features since the latter ones can reflect the change
information neither inside vowels nor outside. So finally, we
combined all the three feature sets and achieved a promising
result.

C. Detection with Phoneme-Dependent Classifiers and Post-
Processing

All the experiments above are implemented with single
classifier. But by investigating the detection performance of
this single classifier for each vowel phoneme individually,
we find that its detection performance varies significantly
for different vowel phonemes. The reason for this is that
the distributions of different vowel phonemes vary greatly.
For example, the features of some stressed syllable may
approximate to the features of another unstressed syllable.
Since our task is to detect the stress pattern of vowel phoneme
rather than identifying the vowel phoneme itself, we train
the classifier for each vowel phoneme, replacing the single
classifier for all the vowel phonemes. Furthermore, the post-
processing is used to improve the performance. The result is
showed in Fig. 3. By using the phoneme-dependent classifiers,
the performance is improved from 85.47% to 86.46% in the
case of using the three feature units. And the accuracy is
enhanced to 88.57% by adding the post-processing.
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V. CONCLUSIONS

This paper presents a lexical stress detection approach.
Firstly, the complementarities between different features
are investigated and the results show that combining the
contextual-aware features with pitch-variation features and
even the frame-averaged basic features is quite necessary
because they represent the different aspects of the stress
information respectively.

These three kinds of feature sets are indispensable and should
be considered as a whole when detecting the stress. Then we
use phoneme-dependent classifiers instead of single one. The
detection accuracy is improved obviously by this method. In
addition, with the post-processing, our system achieves the
accuracy of 88.57% finally.
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